A Neuro-tabu Search Algorithm for the Job
Shop Problem*

Wojciech Bozejko and Mariusz Uchronski

Institute of Computer Engineering, Control and Robotics
Wroctaw University of Technology, Janiszewskiego 11-17, 50-372 Wroclaw, Poland
{wojciech.bozejko,mariusz.uchronski }@pwr ., wroc.pl

Abstract. This paper deals with tabu search with neural network in-
stead of classic tabu list applied for solving the classic job shop scheduling
problem with makespan criterion. Computational experiments are given
and compared with the results vielded by the best algorithms discussed
in the literature. These results show that the proposed algorithm solves
the job shop instances with high accuracy in a very short time. Presented
ideas can be applied lor many scheduling problems.

1 Introduction

The paper deals with the job shop problem which can be briefly presented as
follows. There is a set of jobs and a set of machines. Each job consists of a
number of operations which have to be processed in a given order, each one on a
specified machine during a fixed time. The processing of an operation cannot be
interrupted. Each machine can process at most one operation at a time. We want
to find a schedule (the assignment of operations to time intervals on machines)
that minimizes the makespan.

The job shop scheduling problem, although relatively easily stated. is NP-hard
and it 1s considered as one of the hardest problems in the arca of combinatorial
optimization. Many varions methods have been proposed. ranging from simple
and fast dispatching rules to sophisticated branch-and bound and metaheuris-
tic algorithms. For the literature see Balas and Vazacopoulos [1] (guided local
search method with shifting bottleneck), Morton and Pentico [5] (heuristic local
search), Nowicki and Smutnicki [6] (tabu secarch with representatives and block
properties), Vaessens et al. [9] (local search methods), and their references.

In a classic tabu search method a move is chosen in each iteration of the algo-
rithm. This move is remembered on the list of the length maxt called the tabu
list and it is [orbidden for mazt number of iteration. After executing maxt itera-
tions by the algorithm this move is removed from the list and it can he executed
again. One can sayv that this move looses its status of being forbidden "suddenly’.
Here we present a mechanism in which a status a forbidden move is changing in
the exponential way. Such an approach was successfully applied for the quadratic
assignment problem [4] and for the flow shop scheduling problem [7].

* The work was supported by MNISW Poland. within the grant No. N N514 232237.

L. Rutkowski et al. (Eds.): ICAISC 2010, Part IT. LNAT 6114, pp. 387-394, 2010.
(€ Springer-Verlag Berlin Heidelberg 2010

355 W. Bozejko and M. Uchronski

2 Problem Formulation and Preliminaries

The job shop problem can be formally defined as follows. using the notation
by Nowicki and Smutnicki [6]. There are: a sct of jobs J = {1.2,....n}, a set
of machines M = {1,2.....m}. and a set of operations O = {1.2.....0}. Set O
decomposes into subsets (chains) corresponding to the jobs. Each job j consists
of a sequence of o; operations indexed consecutively by ({1 + 1.....Lj—1 +0;),
which are to be processed in order, where I; = _“‘:'.-_1 0;. is the total number of
operations of the first 7 jobs, j = 1,2,n, (lo =0), and 0 = >_|_; 0;. Operation
x is Lo be processed on machine ., € M during processing time p,. x € (. The
set of operations O can be decomposed into subsets My = {r € Oy, = k}. each
containing the operations to be processed on machine k. and my = |My|, kb € M.
Let permutation @y define the processing order ol operations from the set Afp,
on machine k., and let [{; be the set of all permutations on M. The processing
order of all operations on machines is determined by m-tuple = = (71. T2. ... T),
where me I x Il x ... < H,,.

It is uscful to present the job shop problem by using a graph. For the given
processing order 7, we create the graph G(x) = (N. RUE(x)) with a set of nodes
N and a set of ares R U E(7), N = QU {s,¢}. where s and ¢ are two fictitious
operations representing dummy ‘start’ and ‘complefion’ operations. respectively.
The weight of node 2 € N is given by the processing time p,. (ps = p. = 0). The
set 7 contains arcs connecting consceutive operations of the same job, as well as
arcs from node s to the first operation of each job and from the last operation
of each job to node ¢. Ares in E(7) connect operations to be processed by the
same machine. Arcs from set R represent the processing order ol operations in
jobs, whereas ares from set E(7) represent the processing order of operations on
machines. The processing order = is feasible if and only if graph G(7) does not
contain a cycle.

Let Cx,y) and L(z,y) denote the longest (critical) path and length of this
path, respectively, from node x to y in G(x). It is well-known that makespan
Cmax(m) for m is equal to length L(s, ¢) of critical path C(s, ¢) in G(7). Now, we
can rephrase the job shop problem as that of inding a leasible processing order
7 € I that minimizes Cjup(7) in the resulting graph. .

We use a notation similar to the paper of Balas and Vazacopoulos [1]. For
any operation z € O, we will denote by a(z) and (x) the job-predecessor and
job-successor (if it exists), respectively, of x, i.e. (a(z).2) and (z.v(x)) are arcs
from R. Further, for the given processing order 7. and for any operation x € O,
we will denote by 3(x) and é(z) the machine-predecessor and machine-suceessor
(il it exists). respectively, of . i.c. the operation that precedes . and succeeds
x, respectively, on the machine processing operation x. In other words. (3(x). x)
and (x,d(x)) arc arecs from E(m).

Denote the critical path in G(7) by C(s.¢) = (s, u1,ua, ..., Uy, €), Where
u; € 0,1 < 4§ < w, and w is the number of nodes (except fictitious s and
¢) in this path. The critical path C(s.c¢) depends on ., but for simplicity in
notation we will not express it explicitly. The critical path is decomposed into

A Neuro-tabu Search Algorithin for the Job Shop Problem 389

subsequences By, Bo, ..., B, called blocks in w on C(s, ¢) (Grabowski et al. [3]),
where

Yo By =0 Bhesentifpniiind: X s S 295120
2. B; contains operations processed on the same machine.
= TP e e
3. two consecutive blocks contain operations processed on different machines.

In other words., the block is a maximal subsequence of C'(s.¢) and containg
successive operations from the critical path processed consecutively on the same
machine. ITn the further considerations. we will be interested only in non-emply
block, i.c. such that |Bg| = 1. or alternatively fi < . Operalions uy and uy,
in B, arc called the first and last ones, respectively. The k-th block, exclusive of
the first and last operations. is called the k-th internal block.

A block has advantageous so-called elimination properties, introducaed origi-
nally in the form of the following theorem (Grabowski et al. [3]).

Theorem 1. Let G(w) be an acyclic graph with blocks By, k = 1,2,...,7. If
acyclic graph G(w) has been obtained from G(m) through the modificalions of w
50 that Chae (W) < Chae (), then in G(w)

(1} at least one operation x € By precedes job uy,, for some k €

{1.2,...7}, 0
(ii) at least one operation x € By suceeeds job wy, . for some k € {1,2

el B
Example 1. There are three jobs, 9 operations and three machines, n = 3,
m = 2. 0 = 9. The job 1 consist of the sequence of three operations (1,2,3).
the job 2 consist of a sequence of three operations (4.5.6) and the job 3 consist
of a sequence of three operations (7.8.9). Operations have to be processed on
machines ps = pg = pyr = 1, 1 = ps = fig = 2, 3 = pgq = g = 3. A
feasible processing order is @ = (7. 72, Ty). uhtl(* my = {7,2,6), ma=(1,5,9)
and m3 = (4.8, 3). The graph G(w) is sho*.\- n in the Figure 2 and the Gantt chart
— in the Figure 1.

machine 1

machine 2

machine 3 I 4 5

time | I i | ,‘ l l i |

Fig. 1. The Gantt chart for the Example 1

390 W. Bozejko and M. Uchronski

Fig. 2. The graph G(x) for the Example 1

3 Tabu Search Method

The tabu search method was proposed by Glover [2]. Generally, it consists of
improving the starting solution’s value #*. An algorithin generates the necigh-
borhood of the current solution and seeks the solution which has the minimal
value of Ciuax(3), 3 € N(7x*). This solution 3 is the starting solution in the next
iteration of the algorithm. Such a procedure allows the possibility of increas-
ing the current solution’s value (when a new starting solution is sought), but
it increases the chance of finding the global minimum. To prevent generating
of recently considered solutions (making cycles), those solutions are recorded
on a list of prohibited solutions, the so-called tabu list T (short-term memory).
A standard tabu search algorithm can be written as follows.

Algorithm 1. Standard tabu search algorithm

Let 7 € {1 be an initial solution;
7% the best known solution; =« + 7 — starting solution:
Step 1. Generate the neighborhood N (w) of the current solution .
Exclude from N (7) elements from the T list except 3 € N(x) such that
C'ma:((3) < C{nax (W$];
Step 2. Find the solution § € A(«) such, that
Cnax(9) = min(Chax(3). 3 € N(x)):
Step 3. if Cpax(d) < Chpax(7®) then
= 4
Include ¢ in the list Iy 7 « ¢;
Step 4. if (Stop condition is true) then Stop: else go to Step 1:

£

LetobE (o= 1200 m) be the k-th block in a solution 7, Bg and B the

subblocks. For job j € Bf by f\-‘f (j) let us denote a set of solutions created by
moving job j to the beginning of block Bj, (before the first job in block #(fi)).
Analogously, for job 7 € B;; by Ni(j) let us denote a set of solutions created

A Neuro-tabu Search Algorithm [or the Job Shop Problem 391

by moving job § to the end of block By, (after the last job in block w(lz)). The
neighborhood of the solution m: M(w) = |J {‘\f (F)UNL()).
i By,

Additionally, there is a ba(‘.ktra{:kingjmehchanism applied in the algorithm
(long-term memory). A certain number of good solutions are recorded on back-
tracking list. Good solution — this means that the relative difference between
this solution @ and the best known (current) solution 7*is small or negative
CE’I:(,“}‘H') e). If there is no improvement of the
best solution’s objective function value after some number of iterations, the al-
sorithm jumps to the latest solution obtained from the backtracking list (so the
current solution 7 is overwritten by the solution from the list). The current tabu
list is also overwritten - the algorithm receives the tabu list connected with the
backtracked solution from the backtracking list.

less then e parameter (

4 Tabu Search Mechanism with Neural Network
Application

In the considered tabu search algorithm each move is represented by its neuron.
For the neighborhood considered in [6] a network of neurons formed of 0 — 1
neurons. Let i-th neuron represents a move consisting in swap of lwo adjacent
elements on the positions ¢ and i+1 in a solution 7. In a proposed neural network
architecture a history of cach neuron is stored as its internal state (Zabu effect).
Tf in an iteration neuron is activated, then the value 1 is fixed on its output and
values 0 are fixed on the outputs of other neurons. The neuron activated in an
iteration must not be activated once again for the next s iterations. Fach neuron
15 defined by the following equations:

- =3 s—1
m(E+1) = ad(t), Ai(t) = Crnae () = C‘”W, (1) = kas(t—d), (1)
Cohas d=0
where w;(t) is an output of the neuron 7 in the iteration £. Symbol (g [*:T.,(f}]
means the value of the goal function for the permutation obtained after executing
a move v in the iteration t, i.e. 7!, Symbol A;(¢) means a normalized, current
value of the goal function, and C7, . is the value of the best solution found so
far. Parameters o 1 k are scale factors. A symbol 7;(¢ + 1) (gain effect) defines
quality of a move v. A variable v;(t + 1) (febu effect) stores a history of the
neuron i for the last s iterations. Neuron is activated if it has a low value of the
tabu effect and it gives a better reduction of the Chy,y. More delailed a neuron
i is activated if it has the lowest {m;(f + 1) 4+ ~i(t + 1)} value of all the neurons.
0 < k<1is=~1tthen the formula of v; from the equation (1) takes the
form of:

Yt +1) = kv(t) + xi(f), (2)

where 7;(0) = 0 and z;(0) = 0 for each i. Irom the equation (2) it follows, that
the value of 7;(t) of each neuron decreases exponentially (see Figure 3).

392 W. Bozejko and M. Uchronski

&
oo
T

tabu effect
o o
= o

10

50
terations . °° 70 80 505560

Fig. 3. Changes of the () value

In many algorithms proposed in the literature which are based on the tabu
search method a so-called aspiration criterion is implemented. It consists in
executing of the forbidden move if it follows to the base solution with the goal
function value lower than the best found so far.

In the proposed neuro-tabu search such a function can be implemented by
ignoring tabu cffect for a move v for which A; < 0. However during computa-
tional experiments we have observed that it does not give good effects. Thercfore
a proposed neuro-tabu search has not got such a function.

5 Computational Experiments

A neuro-tabu search (NTS) algorithm for the job shop scheduling problem was
implemented in C++ language and executed on PC with processor with 1.7GH 2
clock. Computational experiments have been provided for the Taillard [8] bench-
mark instances. Starting solutions of the NTS were determined by using INSA
(INSertion Algorithm)[6]. The N'TS algorithm was terminated after performing
100000 iterations, the value of tuning paramecter max_iter was taken [rom [6],
maz_tter = 10000 if makespan has been improved and max_iter = 6000 if the
backtracking jump has been performed.

The time per single iteration was approximately 3.04- 1077 - 0 seconds on PC
with Intel Celeron 1.7 GHz processor. TSAB was run on PC 386DX which is
430 times slower than PC with Intel Celeron 1.7 GHz processor. The computing
power of PC with Intel Celeron 1.7 GHz was measured using SiSoltware Sandra
(the System ANalyser, Diagnostic and Reporting Assistant)[10]. Value of com-
puting power of PC 386DX was taken from [11]. Therefore, in order to normalize

A Neuro-tabu Search Algorithm for the Job Shop Problem 393

Table 1. Percentage relative deviations {o the best known solutions

NTS
problem n X 1M INSA = =056 ki 0T
TANI-10 15 =15 14.62 1.30 1.41 1.30
TA11-20 20 x 15 18.20 2.50 2.65 2.44
TA21-30 200 » 20 i e 2.36 i 2.43
TA31-40 30 x 15 21.13 2.65 1.92 2.29
TA41-50 30 = 20 230 3.72 3.70 3.73
TA51-60 Al x 15 16.43 0.09 (.09 0.09
TAB1-T0 a0 x 20 20.07 0.29 (.36 0.22
TATI-R0 100 = 20 15.21 0.01 (.01 0.01
AVeTAge 18.24 1.62 1.54 1.56

Table 2. A percentage relative deviations to the reference solutions given from Tail-
lard [8]

NTS
problem oo INSA TSAB k=05 k=06 F o
TAOL-10 15 x 15 13.93 0.8 0.70 (.81 0.72
TA11-20 20 x 15 16.50 0.9 (.95 L1k .90
TA21-30 20 x 20 15.75 1.2 1.11 0.93 1.18
TA31-10 30 x 15 18.78 0.6 0.68 -0.03 0.33
TA41-50 30 x 20 20.35 1.9 1.48 1.45 1.49
TA51-60 50 3 15 16.38 0.0 0.05 0.05 0.05
TAGL-TO 50 x 20 i . -2.0 -2.16 -2.09 -2.22
TATI-80 100 x 20 15.13 -0.1 -0.05 -0.05 -0.05
average 16.74 0.41 (.35 0.27 0.30

time per single iteration. the algorithm exccution time for TSAB was divided
by the transformation factor 430. After the normalization the time per single
iteration for TSAB equals 0.62 - 1077 - 0 scconds.

The best known solutions, as well as solutions from [8], were taken as reference
solutions. The NTS algorithm was executed for various values of the scaling
parameter k (k = 0.5,0.6,0.7) and compared with the best up to now algorithm
TSAB of Nowicki and Smutnicki [6]. The value of the & paramcter has got a
great influence onto obtained results. The best results was obtained when the
value of scaling parameter & = 0.6 (see Table 1 and Table 2). The table 2 shows
the differences between results of TSAB and NTS algorithms — results obtained
by NTS algorithms are better than results obtained by TSAB. For instances of
the size 30 x 15 the difference between results obtained by NTS and TSAB is
the most significant (see Table 2). Percentage relative deviation to the reference
solutions for NTS equals —0.03% and for TSAD 0.6%. Change scaling parameter
k for instances of the size 50 x 15 and 100 x 20 (Table 1 and Table 2) docs not
give any eflect.

394 W. Bozejko and M. Uchronski
6 Conclusions

We present a fast algorithm based on the neuro-tabu search approach. Compu-
tational experiments are provided and compared with the resulis vielded by the
best algorithms discussed in the literature. Results obtained by the proposed al-
gorithm are comparable with the results of the state-of-the-art algorithm TSAB
algorithm after a small number of iterations.

As a future work it is possible to adapt the proposed approach for the job shop
problem with different types of neighborhood. a neural network with (o — 1)?
neurons can be applied for neighborhood which is generated by insertion mowves.
In this case a neuron (¢,j) represents the move of inserting operation (i) in
position j. In the traditional tabu search algorithm a move has the tabu status
or it has not. The proposed neural network can be also modified by introduce
moves with different degrees of tabu.

References

1. Balas, E., Vazacopoulosi, A.: Guided local search with shifting bottleneck for job
shop scheduling. Management Science 44(2), 262-275 (1998)

2. Glover, I., Laguna, M.: Tabu Secarch. Kluwer Academic Publishers, Boston (1997)
3. Grabowski, J., Nowicki, E., Smutnicki, C.: Block algorithm for scheduling of oper-
ations in job shop system. Przeglad Statystyczny 35, 67-80 (1988) (in Polish)

4. Hasepawa, M., Ikepuchi, T., Aihara, K.: Exponential and chaotic neuro-dynamical
tabu scarches for quadratic assignment problems. Control and Cybernetics 29,
TT3-788 (2000)

5. Morton, T., Pentico, D.: Heuristic scheduling systems. Wiley, New York (1993)

6. Nowicki. IZ., Smutnicki, C.: A fast taboo scarch algorithm for the job shop problem.

Management Science 42, 797-813 (1996)

7. Solimanpur, M., Vrat, P., Shankar, R.: A neuro-tabu search heuristic for the
flow shop scheduling problem. Computers and Operations Research 31, 2151-2164
(2004)

8. Talllard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64, 278 285 (1993)

9. Vaessens, R., Aarls, E., Lensira, J.K.: Job shop scheduling by local search. IN-
FORMS Journal of Computing 8, 303317 (1996) :

10. http://www.sisoftware.net

11. http://www.roylongbottom.org.uk/mips. hto#anchorAltos

