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In this paper there is presented a prablem of scheduling of construction work in which certain

projects must be executed. Every work consists of projects executed by separate teams. In
a linear system the sequence of works is the same for every project. Uncertain tasks times are
represented by fuzzy numbers or distribution of random variables. We present a tabu search
algorithm and computational experiments which are aimed at checking the sustainability of

set solutions.
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Introduction

An optimal planning of bulding projects is an
important task as it influences the effectivenes of
executive companies in a crucial way. In a negotia-
tion process of construction contracts there appears
necessity to define the dates of project completion.
It is a difficult poblem as the level of uncertainty
concerning different, constantly changing parameters
is rather high. Not meeting the deadlines results in
generating losses (contractual penalties or unused re-
sources). Thus, there appears the need for modelling
of construction tasks that would be the most precise
projection of the course of bulding processes [1, 2}.
It leads to a complex descrete ~ continuous optimiza-
tion problems with uncertain parameteres and irreg-
ular goal functions. While converting the issues of
construction processes into a field of classical theo-
ry concerning sequencing of tasks one may encounter
many problems connected to choosing an appropri-
ate model and adequate algorithm. They are most
commonly completely new, strongly NP-hard prob-
lems of combinatorial optimization.

An integrated part of many management systems
is planning of bulding processes in a linear system [3].
It concerns realization of complex projects consit-
ing of many identical tasks undertaken by specialised
teams. It is an equivalent of flow production in in-
dustry. Projects are represented by tasks, teams by
machies and works executed by teams are represent-
ed by operations. The order of works executions at
the objects are represented by a technological order.

Taking into consideration the implementation
of new techniques and technologies, uniquness, at-
mospheric and geological conditions, it is often im-
possible to define the value of certain parameters ex-
plicitely. In such cases we have to deal with taking
decisions at a high level of uncertainty. Uncertain-
ty of data influences directly the degree of the risk.
Moreover, during the process of project realization
it might appear that some parameters differ from
provisionally accepted (typical) and with the lack of
sustainability of solution it leads to sclutions which
are completely useless in practice. Failures resulting
from direct implementation of classic deterministic
algorithms indicate the necessity of consideration of
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uncertainty in the beginning of the whole process of
model building and during the construction of an al-
gorithm itself.

Poblems of taking decisions under uncertainty
are solved by application of probabilistic method or
through fuzzy sets theory. In the first case 4, 5]
knowledge of distribution: of random variables is of
crucial importance. Some pocesses are characterised
with randomity by naturve. They depend on weather
conditions, traffic intensity, number of accidents, ge-
ological conditions, device’s failure, etc. If they, nev-
ertheless, posses certain “history”, it is possible to
define their distribution on the basis of statistical
data.

In many issues the uncertainty of data is not
of random nature but it results from uniqueness of
a process, errorr in measurement, gtc. In such a case
a natural method of representing uncertainty are
fuzzy numbers [6, 7]. In this case a huge problem
is posed by a proper choice of membership function
and deffuzification method. They have crucial influ-
ence on the quality of taken solutions.

In this paper we consider the problem of schedul-
ing of bulding tasks realized in a lincar system. They
consitute an important part of construction practice
issue, having a marked and direct impact on the final
costs of project realization. We propose algorithms
for solving certain problems based on a tabu searched
method and modification of this algorithm for a case
when the deadlines are uncertain. We comparc the
sustainability of solutions in case where uncertain da-
ta are represented by random variables with a normal
distibution or fuzzy numbers in a threetuple repesen-
tation.

Linear system in bulding

We examine a building project (BP in short) con-
sisting in execution of n objects from a set

0={0,0..,0%,
by m teams from a set '

B = {Bl,Bz..A,Bm,}.

Every object O € O is a sequence of m projects
O =[P, P}.... PL)

where project P} (i =1,2,...,m, j = 1,2,...,m) is
executed by B; team in p} time. Projects in O* € O
object should be performed in a fixed technological
order, i.e. any P} project is to be executed after the
completion of P?_,, and before the beginning of P},
(2 < j € m —1). The following constraints must
be satisfied:

4

(i) every project (at the object) can be executed on-
Iy by one, defined by a technological sequence,
team,

(i1} none of the teams can ecxecute more than one
work at a time,

(iii) technological order must be maintained at every
object,

execution of any work cannot be terminated be-

fore its completion.

Let 7 be a certain pemutation of objects (el-
ements of O set). The permutation will be some
permutation of objects (elements of set). This per-
mutation defines the sequence of execution of par-
ticular works at objects i.e. B; € B team exe-

P

(iv

cutes P;'(i) projects at w(i) € O object, only af-

ter execution of P;m, P;rm,..., P;'(i_” projects
successively at m(I),...,m(i — 1) objects, but be-
fore execution of P}'(”'”, PJ?T“+2), v, P orks at
m{i+1),;:.,7(n) objects. Let us denote by & a set of
all possible permutations of objects. The cardinality
of this set equals n!.

If the works at objects are executed in 7 € @
order and p.(;),; is the time of execution of PJ”“)
(i€ O, j € B) project, then the moment of comple-
tion of this work Cr(;y ; can be determined from the
following recurring dependency:

k]
D Pr(i)io j=1
E=1

Gt = Crgiyj-1 +Pr(gy 1=LJI> 1 ()

max{Cr(i.j-1,Cr(i-1),; } +Pxliyss
i»l,5>1,

and the moment of the beginning of its execution
Sr(s)s = Crtadg ~ Prlidg- (@)

One can easily check that defined by (1) and (2)
moments of beginning and completion of projects at
objects fulfil the constraints (i)-(iv), thus they are
acceptable solutions of BP problem.

Modg} of ‘the above described project is known
in a scheduling theory as a flow shop problem. If we
examine the criterion of minimization of time com-
pletion of all the objects (Crmax), then this problem
can be qualified as NP-hard [8]. It is usually solved
by heuristic methods. The use of simulated annealing
is presented, e.g., in Osman and Potts [9], Ogbu and
Smith [10], Bozejko and Wodecki [11] (parallel algo-
rithm), tabu search in Nowicki and Smutnicki [12].
Grabowski and Wodecki [13], genetic algorithm in
Reeves [14].

A very important criterion in a building process
is meeting the deadline or a possible minimization of
penalties for breach of contractual terms.
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For P]? project let dy;, wi; be adequately: a dead-
line time for execution of works set in contract
time and a coefficient of penalty for delays. Three
8 = (p,d,w), where: p = [pi;jlnxm — matrix of
projects execution time, d = [d; jlnxm — terms ma-
trix, w = [W; j]lnxm — matrix of penalty coefficient,
is an instance of deterministic data. ‘

If 7 € @ is a sequence of objects execution and
Clay. I8 a term of project completion P;(’;.), then

1,
Uiy = { 0,

is a delay, and w, () ; - Ursy,; 15 & pena]tyi“t?r delay.
Then

i g i

if Cx(: < d (i), j‘,[ (3)

T

=y Z Way s = Uiy s (4)

i=1 i=1

is a sum of penalties for not meeting the deadline of
project completion (in short, cost of permutation 7).

The problem examined in this work consists in
determining optimal sequence of execution of objects
in a linear system minimizing function (4). It resolves
to determining permutation 7 € @ that

W(r*) = min{W(m): 7 € ®}.

The problem will be defined in short as PFS. For
it is an equivalent of NP-hard one machine prob-
lem of sequencing tasks 1|| Y w;U; [15]. Currently
there are not known optimal algorithms for solving
problems of multinominal computational complexity.
This is why for finding a solution of PFS problem
we use a heuristic tabu search algorithm.

Classic tabu search algorithm

In solving NP-hard problems of discreLe opti-
mization we almost always use approximate algo-
rithms. The solutions given by these algorithms are,
in their appliance, fully satisfying (they often differ
from the best known solutions by less then 1%). Most
of them belong to the local search methods group.
Their acting consists in viewing in sequence a sub-
set of a set of acceptable solutions, and in pointing
out the best one according to a determined criterion.
One of this method realizations is the tabu search,
whose basic criterions are:
® neighborhood — a subset of a set of acceptable so-

lutions, whose elements are rigorously analyzed,
® move — a function that converts one solution into
another one,
tabu list — a list containing the attributes of a cer-
tain number of solutions analyzed recently,
ending condition — most of the time fixed by the
number of algorithm iterations.
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Let # € ® be any (starting) permutation, Lrs
a tabu list, W costs function, and 7* the best solu-
tion found at this moment (the starting solution and
7* can be any permut.ati'on).

Algorithm Tabu Search (TS)
repeat e
Determinate the nexghborhood N(x) of

the permutation -7 ;

Remove from N () the permutations
forbidden by }he @é-]‘ list;

Determmatg: betmutatlon de N(m),
in which -

W)= mmW(ﬁ) Be N
tf(W(5)<H7(7: ")) then z°:=5;
Include & parameters on the Ly list;
=8

until (ending condition).

The computational complexity of the algorithm
depends mostly on the way the neighborhood is gen-
erated and viewed. Below we present in details the
basics elements of the algorithm.

The move and the neighborhood

Let # = (m(1),...

,7(n)) be any permutation
from the ¥, and .

L(m) = {m(1): Criiyym > drgiyym)s
a set of late tasks 7.
By nf (I = 1,2, 'k—lk+1 ,n) we mark

a permutation recelved from 7 by changmg in 7 the
element w(k) and 7({). We can say at that point that
the permutation 7r{° was generated from 7 by a swap
move (s-move) sF (it méans that the permutation
wf = sf(n)). Then, let M(w(k)} be a set of all the

s-moves of the (k) element. By

U M=k,

w(k)eL{wr)

M(m) =

we mean an ‘s-moves set of the late elements w in
the pemutation. The power of the set M () is top-
bounded by n(n — 1)/2. .

The neighborhood m € ® is the permutation set

N(m) = {sf(m): sf € M(m)}.

While implementing the algorithm, we remove
from the neighborhood the permutations whose at-
tributes are on the forbidden attributes list Lrg.
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The tabu list

In order to avoid generating a cycle (by return-
ing to the same permutation after a small number of
algorithm iterations), some attributes of cvery move
are saved on & tabu list. It is operated according to
the FIFO queue. By making the s} € M) (gener-
ating from m € & the permutation 7}) we write on
the tabu list Lyg of this move’s attributes, the tuple
(w(r), 5, W(n5))-

Suppose, that we analyze the move sf € M(B)
generating from 4 € @ the BF permutation. If the tu-
ple (v, 4, ¥), such that 3{k} =7, = J and W(B} > ¥
is on the L g list, such a move is forbidden and re-
moved from the M(3) set. The only parameter of
this list is its length, the mimbet of the elements it
contains. There are many féglizgltions of the tabu list
in the bibliography.

Uncertain tasks times

We assume that times of tasks execution are not
deterministic. They will be represented with the use
of fuzzy numbes or random vaiable.

Fuzzy tasks times

In this paper the fuzzy tasks times are repre-
sented by a triangular meribership function p (i.e.
3tuple Bij = (pM°pRd,pl) 1 = L2,...m,
§=1,2,...,n (see Fig. 1) with the following prop-
erties:

o (7 < PR < P,

e pla)=0fora <pl"oraz P

o uprt) =1,

e 4 is increasing on [pg‘?}“,pf;d] and decreasing on

med max
iy 1Pig l

1\
1 ......

mmn med max

Pir P Pi;

min . med

Fig. 1. A triangular (p{;", P P furzy membership
function.

The addition of fuzzy numbers

a=(a1,az,8s) and b= (b1, b2, ba),

6

can be derived from the extension principle and it is
as follows [16]

G4 b=(a; +b1,az+bs,a3 +ba).
Similarly
nlax{&,g} = (max{a1, b1}, max{az, b2}, max{as, bs}).

Let 8 = (p,d,w) be an example of determinis-
tic data for PFS problem. We assume that times of
work P}, © € 0, j € B execution are fuzzy numbers

min med max)
s

Di; = (P Pis s Pig
where pPi® = pij — \pi; /6] p?"jed =p;; and
P =p;; + Lpis/3]-

The three 8 = (p,d, w) , where p = [Dijlnxm i8 2
matrix gf fuzzy numbers, are called fuzzy data, and
the problem ~ fuzzy one (PFSF in short).

If permutation 7 € © and the time of the execu-
tion is determined by a fuzzy number

ﬁvr(i).j = (p:?(i’zs,ji pﬂeg‘j’ P?,‘(?)‘,j),
then its finishing time is a fuzzy number in the form
of:

Cﬂ(i)‘j = (G:-rn(]ir)l,jv Cmed

it max ).

m(i).3

min med
where CT 80

i),3° ~w{1).j
from the }olljowing recurrent

min max{c:‘(lin—l)_jl C:r“(i:r)‘,j—l} +pmin

%4 can be determined

med
. and C} }
ormulas:

n(i).d LGEY
d d d 4
omet; = max{CR 0 Crtian} + PR 2

mex - = max{CREty) 5 Crimi} + Pr

with the initial conditions

g = Cmorg =G I=12.m
= O, = OT,, =12,

g
We pe}-}orm@ a deffuzification

F 2 a a4
tr(d = ] (C,‘:‘(‘:;,]- +C8a T Calia +

e . 1

The equivalent of delay (3) is

1,
Yn(i)d =1 0

In case of fuzzy data, the equivalent (4) is func-
tion

ity > dai)a
if tr(s)g S g g

WF(r) = Zzwn(i),jvw(i).j- (6)

j=15=1

An algorithm of solving PFSF problem {with
a goal function (6)) is called fuzzy, TSF in short.
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Probabilistics tasks times

Let § = (p,d,w) be an example of determinis-
tic data for PFS problem. We assume that times
of execution of works P]?", i€ 0, 7€ B areinde
pendent random variables with a normal distribu-
tion, i.e. pyy; ~ N(pzj,045). The expected value of
times E(fi ;) = pi;. Then data 6 = (5, d, w), where
D = [Pi,jlnxm is a matrix of random variables, we call
a probabilistic data, and the problem — probabilistic
(PFSR. in short).

Let m € @ be some sequence of tasks execution at
objects. In order to simplify the calc ations we as-
sume that moments of completi parate works
have also a normal dist;ributionof1 B, £

éx(n)jNN(C( Jiin m

where
1‘ .
Z_: (k)3 7= 1)
; 2 S s
Creing = Clag t P, 1=1Li>1,

max{CZ ) ;_0:Coiny ;) + P
1> 1,7>1,

and o parameter is experimentally determined. The
equivalent of delays (3) are random variable

N 1,
Untiyg = g

By solving a PFSR problem (with a random
times of tasks execution) for a cost function (4) we
assume

if éﬂ'(z),j > dvr(t),ja
it Criyj 2 duga) 5-

moon

WH(x) = ZZWWUJJ(E(U 1),J)+D ( x(t)J))

Jj=1i=1

where E(U i).;) 18 an expected value, Dz(f/,,(z)']),

a variation of random variable Uy (;y ;.4 = 1,2,...,n,

J=12,...,m. Because

E(Un() 5)=P(Cra) ) > drgsyy =1-Fg | (dri. i)
DX Uniiy1)=Fg,, (e s) (1= Fg,  (drg))s

where Fx is distribuant of random variable X with
a normal distribution. Finally

m o n

=D waays (1—(F5,(‘,_j(dw(:),j))2)- (M)

G=11i=1

Tabu search algorithm of solving rozwiazywania
problemu PFSR, problem (with a goal function (7))
we call a probabilistic one, TSR in short.
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Sustainability of algorithms

Sustainability is some property which enables es-
timating of the influence of data perturbation on
changes of goal funetion values. We present a method
of generating a set of instances as the fist priority.

Let & = (p,d,w), where: p = [pj;lnam.d =
[dijluxm and w = [W;;]nxm are respectively: the
matrix: of work execution times, completion times
and penalty coefficient, will be some instances of (de-
terministic) data for PFS problem. By D(6) we de-
note a set of data generated from € through per-
turbation of th ‘gxecution. This perturbation con-
sists in chang P = [pijlnxm elements into
randomly deﬁeyn qd values (i.e. numbers generated
in accordance.vwn. qertam distribution, for instance
monotonous,; et L}A.ny clement of D(#) set takes
form of (p’, if w) ‘Where perturbed elements of ma-
trix p’ = [pw]nxm, are determined randomly. Thus,
D(8) set includes instances of deterministic data for
PFS problem, different from one another only by
values of tasks’ execution times.

Let A = {TS,TSF, TSR}, where TS, TSF
and TSR algorithms are: deterministic, fuzzy and
probabilistic respectively. By 7'r,§1 we denote a solu-
tion (permutation) determined by A algorithm for §
data. The value of expression W (!, ¢) is cost (4) for
an instance of deterministic ¢ data, when objects are
executed in a sequence of (permutations) 1r£ (ie. in
a sequence defined by A algorithm for 4) data. Then

A(A,8,D(8))= D 6)I LD

PED(S)

W(rZs, o)

We call a sustainability of x§' solution determined
by A a.lgonthm,..en ‘aset of D(6) perturbed data. De-
termmmg 7r7$ =2 far &, starting solution of TS algo-
rithm 71' was denete,d and next

3
‘V(Wa,w) W(xl%,¢) > 0.

Thus, A(A, 8, D(d)) > 0. The value of expression
A(A, 8, D(8)) is an average relative deviation of the
best w# solution for the best set solutions, for every
instances of perturbed data ¢ € D(4).

Let € be some set of deterministic instances for
PFS problem. Sustainability coefficient of A algo-
rithm on a ( set we deﬁne as follows:

S(A; ) = ol %A(A 5, D(8)). (8)

The smaller the coefficient, the more sustainable
the solutions set by A algorithm i.e. small changes
in value of data cause small changes of goal function
value.

Wt o) — WIS, o)
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Computational experiments

Algorithms presented in this work were pro-
grammed in a C++ language. Computational experi-
ments were carried out on a personal computer with
a 2.2 GHz processor. Deterministic data were gen-
erated on the basis of 31 instances with a {(n % m)
size from 11 x 5 to 75 x 20 displayed on a OR. Li-
brary {17]. For every instance (matrix of work ex-
ecution times p = [Pijlnxm) there was matrix of
terms d = [dijlaxm added and matrix of penalty
coefficient w = [wj j]nxm- Elements of both matrices
were generated randomly according to stable distrib-

n m™m
ution adequately from aset {1,2,..., 3 % pis}and
‘ i=1j=1

{1,2,...,10}. Let © be a sat g)'ffmstances generated

in accordance with this rrfgtltbd On the basis of in-

stances from ) the data was gétierated:

e fuszy, for TSF algorithjin"(gﬂté’ described precisely
in chapter: Fuzzy tasks tifes),

e probabilistic, for TSR algorithm(it is described
precisely in chapter: Probabilistics tasks
times).

Next, for every instance of deterministic data é €

Q there were 100 instances of perturbed data gener-
ated (elements of D(8)) set). Time perturbation py;
(i=1,2,...,m, §=12,.. .,m) consists in replacing
it with a new value randomly chosen in accordance
with a normal distribut;ion‘I_V(pij,p,-j/l()). In total,
there werc 3100 instances of perturbed data. With
initiation of every algorithm there was a starting per-
mutation 7 = (1,2,...,n) assumed, and morcover:

e length of list of forbidden moves: 7,

» number of algorithm’s iterations: n/2 or n.

For every solution determined by A = {Ts,

TSF, TSR} algorithm there was a percentage rela-

tive deviation determined:

e(A) = Was Wabd 0o,
e
where Wy is a value of s{; @ibéfﬁetermined by A al-
gorithm, and Wygy is’ 4fa¢ - determined by the
best NEH construction’algorithm [18] for a flow
shop problem with a Cryax criterion. The average val-
ues of these deviations are presented in Table 1. The
values of solutions determined by each of the three
presented T'S algorithms are better than the solu-
tions determined by NEH. The best appeared to
be a deterministic algorithm (average improvement
6.1%), the worst — probabilistic algorithm (average
improvement 1.7%). Then, the sustainability coeffi-
cients (8) of deterministic TS, fuzzy TSF and prob-
abilistic TSR algorithm were determined. The cal-
culations were made for the number of iterations of
n/2 and n algorithm. For the biggest instances it is

no more than 75 iterations. Owing to this procedure,
the total time of calculations of the three tested al-
gorithms does not exceed 5 minutes. With a larger
(eg. n®) number of iterations, the sustainability of
separate algorithms increases slightly, whereas the
time of calculations increases to a huge extent. Pre-
cise results are presented in Table 1.

Table 1
Average relative deviation e(A) and sustainability S(A, Q) of
algorithms: deterministic TS, fuzzy TSF and probabilistic

TSRH.
Iterations Averag.e rfelative Sustainability
number deviation
Algorithms
TS | ISF | TSR | 15 | TSF | TSR
n/2 43| -15| —06 |61 2.8 6.0
n —74 —4a8 | 27|78 4.0 74
Average 6.1 -3.2|-1.7[69] 3.9 6.4

The most sustainable was a fuzzy TSF algorithm
for whigh a sustainability coefficient S(TSF.Q) =
3.9%. leorithms: TS and TSR have similar
sustainability coefficient S(TS,Q) = 6.9% and
S(TSR,Q) = 6.4%. However, they are far less sus-
tainable than TSF algorithm.

While comparing the results, one may be sur-
prised to discover that the increase of sustainabil-
ity factor (i.e. worsening of sustainability) was ac-
companied by the increase of iteration number.
It concerns both: deterministic and probabilistic al-
gorithms. It results from the fact that better solu-
tions (such were obtained in double increase of iter-
ation number) are more vulnerable to any perturba-
tion of data.

Case study

Investment task consists in realization of twelve
residential buildings (n» = 12). The buildings are
characterized by a similar set of construction works
creating an ordered element’s (m = 9) sequence of
works ;beginning from ground works and finishing
with figgout] works. Basing on Standards of QOutlays
In-king#Catalogue the following times (matrix p) of
work execution (in tenths of hours) were determined

7 8 T 7 7 8 7 7 6 7 5 4
8 8 9 9 18 9 8 9 8 8
8 10 9 9 119 9 9 9
7 8 7 7 8 8 T 7 8 8 8 7
-] 7 7 7 7 7 7 7 7 7 8 15
11 14 11 13 13 14 11 13 14 13 14 8
9 14 9 o1 139 1 8 i 19
4 8 6 7 5 7 7 8 9 o 9 3
6 9 5 9 7 5 3 9 8 B T 7

During realization of the project it appeared that
real times (matrix p’ — perturbed data) differ from
the originally established ones

Volurne 2 @ Number 1 ® March 2011
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ter
an
ed.

ue

for
by

and probabilistic (TSR) algorlthms the
mutations (sequence of building’s ex cutlon) were
determined. For perturbed data (mdtrix p') and
every permutation there was a value of penalty func-
tion calculated. The increase of penalty function val-

10 8 7 8 7 8 6 7 6 8 5 5
8 0 8 9 3 19 9 8 10 3 7
9 12 9 9 010 11 i 9 8 9
7 8 9 7 7 8 7 o 8 8 9 7
6 6 7 7 7 8 7 T 8 7 8 16
otz 11 13 12 14 1k i3 14 12 14 7
49 0 10 13 9 1w 8 10 12 %
4 7 [ T 4 7 7 6 9 9 e 3
4 9 4 9 6 3 8 6 3 7 6 6

In accordance with the description presented in

chapter 5 the deadline times for works (matrix d)
and weights of penalty function (matrix w) were de-

mined. Next, on the basis of p matrix there was
instance of fuzzy and probabilistic da
With the use of deterministic (TS),

for fuzzy, probabilistic and deterministic algo-

rithm was adequately: 3.6%, 9.1% and 17.4%. The
most sustainable appeared to be a fuzzy TSF al-
gorithm. The change of time for work execution (in
relation to originals) caused the increase of penalty

not meeting the deadlines for work completion
3.6%.

Summary

on

] be

In this paper we present a certain problem of con-

struction works scheduling. Because it is a difficult
issue to define interchangeably the time of execu-
tion of individual works, thus, we model them with
help of fuzzy numbers and random variables. In or-
der to solve the problem we use an alg nthm based

tabu search method. Computattona experlments

were carried out. The most suatamablé appearcd to

solutions determined by algorithm in which un-

certain data are represented by fuzzy numbers.

The work was partially supported by the Pol-

[2
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ish Mimistry of Science and Higher Education, grant
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