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Abstract. In this paper we are proposing o methodology of the fast
determination of the objective function for the How shop scheduling
problem in a parallel computing environment. Parallel Random Access
Machine (PRAXN) model is applied tor the theoretical analvsis of alao-
rithm’s efficiency. The presented method needs a fine-grained paralleliza-
tion. therefore the proposed approach is especially devoted 1o parallel
computing svstems with fast shared memorv, such as GPLU s,

1 Introduction

We can see the process of jobs fHowing through machines (processors) in 1any
practical problems of scheduling: in computer systens as well as in production
systems. Thus. the flow shop scheduling problem represents a wide class of pos-
sible applications. depending on the cost tunction definition. For each of them. a

correspouding discrete model has to be construcred qaud analvzed. Sowe of them -

(e.g. with the makespan criterion and with roral weichred tardiness cost fune-
tion) have got a special elimination-criteria (so-callod bloek: prope rties) which
speed up the caleulation signiticantly. especially in the waltithread computing
environent.

1.1 Formulation of the Problem

The problem has been introduced as follows. There are 1 jobs from a set J =
1 U - 1} to be processed i a production svstent having m machines. indexed
by 1.2..... m. organized in the line (sequential structure). A single job reflects
one final product (or sub produet) manufacturing. Each job is performed in m

I'he work was supported by NINISW Poland. within the erant No. N N3 23223,
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. subsequent stages. i a way comon to all the tasks. The stage i is performed
¢ by a machine 7. i = 1.2..... m. Each job j € J is split into a sequence of m
- operations Oy;. 0. ... Omj performed on machines. The operation O;; reflects

processing of job j on machine i with processing time p;; > 0. Once started the
job cannot be interrupted. Each machine can execute at most one job at a time.
each job can be processed on at most one machine at a time.

The sequence of loading jobs into a system is represented by a permutation
= (1) e ~(n)) of clements of the set 7. The optimization problem is to
find the optimal sequence 7 so that

(‘nm:\'{ﬁx} = ll}ill CYnmx[T'-} [1)

TEYy

where O, (7) is the makespan for a permutation 7 and @, is the set of all
permutations of elements of the set 7. Denoted by C; the completion time of
job j on machine 7 we obtain Chax(7) = Con.mny- The values C,; can be found
by using either the recursive formula

e — max{C‘,_l_ﬂ_,,.(‘,_:..J-_“} + Pirj)s (2)
§ = 1.2 coun it §= L2 s 1. with initial conditions Cizg) =0. i =1.2.....m
Corij) =0.J=1.2..... 1. O a noun-recursive one
! Ji

Coojy = max_ > % Penik: (3)

=<1 =<...5), =/
JnShSe-Si=it

Computational complexity of (2) Is O(mn). whereas for (3) it is

) (n +m)"-!

Jri=2
(n—1)!

O W + E=1)) =0 ). (4)
The former formula has been commounly used in practice. It should be noticed
that the problem of transforming sequential algorithm for scheduling problems
into parallel one is nontrivial because of the strongly sequential character of
computations carried out using (2) and other known scheduling algorithms.

Garev et al. /8] showed that the How shop problem with makespan crite-
rion Ciyax i strongly NP-hard for m > 3 machines. Various serial and parallel
local search methods are available. Tabu search algorithms were proposed by
Taillard [12]. Reeves '11]. Nowicki and Smutnicki '10]. Grabowski and Wodecki
9. Bozejko and Wodecki 3] applied this method in the parallel path-relinking
method used to solve the How shop scheduling problem. Bozejko and Wodecki
also proposed a parallel scatter search 4] for this problem. Bozejko and Pem-
pera (5 presented a parallel tabu scarch algorithm for the permutation flow shop
problem of minimizing the criterion of the sum of job completion times. Bozejko
and Wodecki (6] proposed applying multi-moves in parallel genetic algorithm
for the flow shop problem. The theoretical properties of these multi-moves were
considered by Bozejko and Wodecki in the paper (7). A survey of single-walk par-
allelization methods of the cost function calculation and neighborhood searching
for the flow shop problem can be found in Bozejko [1].

9
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1.2 Models

The values €, from equations (2) and (3) cau also be derermined by means of
a graph model of the How shop problem. For a civen sequence of job execution
7 € @, we create a graph G(7x) = (M x J. F" _ F7 ). where M ={1.2.....m}.
FJ={1.2.....nk

m—=1 u
FY = U U{il.a.f'l.ts—l.fu:- {H)
s=1 t=1
is a set of technological ares (vertical) and
i fi— 1
f"':UU{il.w.?}.u_r—l:w;- (i)
=1 t=1

is a set of sequencing ares (horizontal).

Ares of the graph G(7) have no weights bur eacli vertex (s.7) has o weight
Pemepye A timie C;; of finishing a job =(j). j = 1L.2.. ... noon achine /7 =
1.2..... m equals the length of the longest path trom vertex (1.1 to vertex (4./)
including the weight of the last one. A sample ‘mesh” craph Giz) s shown in
Fig. 1. The mesh is alwavs the same. vertices weichits depend on the =0 For the
How shop problem with €. cost funcetion the value of the eriterion funerion for
a fixed sequence 7 equals the length of the critical path in the eraph Gir). For
the How shop problem with the C,,, criterion the value of the eriterion function
is the sum of lengths of the longest paths which begin tfrom verrex (1.1) and
ends on vertices (1) (m.2). ... (th.n).
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Fig. 1. Scheme of a fust parvallel cost function caleulation in the How shop

The graph G(7) is also strongly connected with tormnlas (2) and (3) of com-
pletion times C;; caleulation. By using formula (2). ir iz enough to generate

consecutive vertices. as dashed lines show (see Fie. 1 taking in the vertex (7. j).
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connected with the ;. a greater value from the left vertex. € s and from the
upper one. C—1 - and adding p;; to it. Such a procedure generates the longest
path in the eraph G(7) in time O(nm). Formula (3) can also be presented as
the longest path generation algorithm but its conception is based on the all hor-
izontal sub-paths generation and its computational complexity is exponential.

2 Parallel Cost Function Determination

The recurrent formula (2) is applied to determination times of jobs completion
C;; on particular machines. With the use of a single processor. the calculations
time T, of the Ciz 4 value (according to (2)) is O(nm).

There is a method of times of jobs finishing determination Cirjy (I =

1.9 ene e J = LiBesuss n) on the p (p < m) -processors CREW PRAM (a
theoretical parallel caleulations model) in the paper [2. Without the loss of
generality let us assuie that # = (1.2.....n). Calculations of C;; by using
(2) have been clustered. Cluster k contains values C;; such that i+j—1=Fk.
k=1.2..... 11— — 1 and requires at IMOst 111 Processors. Clusters are processed
in an order k =1.2..... n + m — 1. The cluster k is processed in parallel on at
most m processors. The sequence of calculations is shown in Fig. 2 on the back-
ground of a arid graph commonly used for the flow shop problem. Values linked
by dashed lines constitute a single cluster. The value of Ciasr criterion is simple
Con. To calculate Coum = oy Cpywe need to add n values Cpy ;. which can
be performed sequentially in n iterations or in parallel by using m processors
with the complexity O(n/m + logm). In this case. the calculation time is

;_,:m*n*m—l‘ (7)

p
As we can see. calculations are made in groups of p processors and there arve
many situations. in which some part of processors from a group has an idle time
(iterations 1. 2. 3. 6. 8. 10. 12. 14. 16. 18. 20. 21. 22 in Fig. 2). Therefore. the
speedup equals
48 nm

5, = = = . (8
G i;‘ﬂ-ku*m—l )

In this case a limiting value of the speedup is

. T~
lim s, = lim — = lim = ==

R np D
n—> n—>x Ay n—x i%n- -1—”*”?-‘1 m - p 1+

s (9)

Here we are proposing the new method of calculation of jobs finishing times.
in which we fully take advantage of multiprocessor environinent by reducing
processors idle times. The idea is shown in Fig. 3.

Therefore. in the beginning. the following elements are determined: C; - 1 -
Cyr2)-Cozinr: Crzizr B 1 Gt o2 Chzpy-P < M These elements create

a “triangle” with the width p in the Fig. 1. and their number is mp‘;{““. The time
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Fig. 2. Scheme of a classic parallel cost function calenlation in the flow shop
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Fig. 3. Scheme of a fast parallel cost function caleulation in the flow shop
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of its calculation (on the p -processors CREW PRAM)) is p (but there are some
idle times. as in iterations 1.2.3 in the Fig. 3). It is obvious. that the number of the
symmetric lower right “triangle” is also ﬂ-’”fﬂ Because the number of all C; ;).
i=12.....n.j=1.2..... m is nm. so there is nm — QE-E—’{;‘J =nm—-p(p+1)
elements out of both “triangles™. We do not generate idle times inside the region
between “triangles” because if a group of processors calculates elements on the
bottom of the eraph. including the lowest element C,, -. for some k. then
the rest of the processors. which normally have an idle time. calculates elements
Cl.?rtk-o-m— 11+ (3‘—H\~—m—‘]‘ etc.

The time of calculations of the region between “triangles”. in accordance with
the scheme presented in Fig. 3. is L”’:—’j’:”;l' on p-processors CREW PRAM.
Therefore. the total calculations time. including “triangles™. is

-1 — +1 )+ 1 n — +1
76 = Mpo ) nm—plp+1)  pU - b ol 1y 4 LD ) (10)
2 7 2 P
and consequently the speedup equals
. T, ’ nmn
p = T:: o pip+ 134 nm—;;tp+],r ; (11}
However. the limiting value of this speedup is
N N ; n
lim s; = lim — = lim n: = = (12)
H—x H—"x }; n—x P(.P*l)*%
nm
= lim =il (13)

n—=x pAp+1)+nm-—p(p+1)
Thus. we have obtained a much better limiting speedup comparing to the method
taken from the paper (2]

3 Experimental Results

The parallel algorithm of calculating goal function in permutation flow shop
problem was coded in C(CUDA) for GPU. ran on the 1792-processors nVidia
Tesla S2050 GPU and tested on the benchmark problems of Taillard [12]. The
GPU was installed on the server based on Intel Core i7 3.33GHz processor work-
ing under G4-bit Ubuntu 10.04 operating system. The algorithm considered uses
m — 1 GPU processors for calculating a makespan. Its sequential version is ob-
tained by assigning p = 1 and is also executed on GPU. The sequential algorithm.
using one GPU processor. was coded with the aim of determining the speedup
value of the parallel algorithm. Table 1 shows computational times for the se-
quential and parallel algorithm as well as a *IJUedup The value of a relative
speedup s can be found by the following expression s = . where t, - the com-
putational time of sequential algorithm executed on tlm smgle GPU processor.
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- the computational time of parallel algorithm exee quted on p GPU proces-
sors. As we can notice the highest average speedup values were obtaine « for the
problem instances with bigger number of jobs n and bigger number of machines
1. because in these cases the influence of “triangles”™ regions (desceribed in the
Section 2) on the total parallel computations is the lowest. from the theoretical

point of view.

Table 1. Experimental vesults for Taillard’s instances

oo p by [nus] ' A speedup s

20 < 5 4 0.0237 0.0665 2 TOO8
20« 10 4 0.0293 0.1 161 1.OTH2
200« 20 149 0.0163 0,364 ] TO6ND
A x H | 0.0534 (L 10NG 20330
50 = 10 9 J.O6GTH (13356 1.9G 12
50 = 20 19 0. 1039 (L7 160 71753
100 - 5 | 0. 10533 0.3157 30518
100 = 10 9 0.12.13 1.6 160) 5.1939
100 = 20 1Y 0.1811 1.3762 7627
200 = 10 0 (0.2387 1.2717 54267
200 » 20 14 03115 26378 T.0555
500 - 20 19 (.28 ti.atiIng T.1007
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The proposed parallel algorithm has been compared with another parallel
algorithm for calculating makespan in permutation flow shop from 2]. Fig. 4
shows a speedup obtained by a parallel algorithm from 2] - FSCmax2 and a
speedup obtained by a proposed algorithm - FSCmax1. Compared algorithms
were tested on the test instances with a big number of jobs (m = 500) and
different number of machines (m = 10.20.50.100). For both algorithms the
seedup value increases with the number of machines. For the FSCmax1 algo-

hm the speedup is bigger than the speedup for FSCmax2 algorithm.

- 4 Conclusions

e method proposed in this paper can be used for computations’ acceleration in
et aheuristics solving the flow shop scheduling problem. The calculation time of
ol function in algorithms which solve the job shop problem take even over 90%
the whole algorithm computation time. so the use of parallel algorithm for goal
action calculation might result in significant decreasing of algorithm execution
me for solving the How shop problem. The theoretical results proposed here
> fully confirmed by the conducted computational experiments.
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