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1. Introduction

For many years, one could observe an increasing market
demand for diversity (multiassortment) of production. This may
be provided, among many other issues, by means of cyclic produc-
tion. In fixed intervals of time (cycle time) a certain ‘batch’ of
assortment (a mix of kit, a set) is produced. Process optimization
is typically reduced to minimization of cycle time. Proper selection
of mix and cycle time enables not only to meet demand, but also to
improve efficacy and effectiveness of machinery use. Thus,
recently, one can observe a significant increase of interest in the
problems of cyclic tasks scheduling theory. For they are usually
important and difficult, (mostly NP-hard) problems, from the
standpoint of not only theory, but also practice.

A comprehensive overview of the state of knowledge concern-
ing the cyclic task scheduling problem can be found in the work
of Levner, Kats, Lopez, and Cheng (2010) analyzing the issues of
computational complexity of algorithms for solving various types
of cycle scheduling problem. Here, in particular NP-difficult prob-
lems of various cyclic types including a variety of criterion func-
tions and additional constraints (no wait, no buffer, etc.) are
considered.

In the scientific work by Panwalkar, Dudek, and Smith (1973)
on task scheduling it was found that 75% of problems occurring
in practice requires at least one setup dependent on the order of
tasks execution. However, in 15% of the problems a setup of all
tasks should be taken into consideration. Nevertheless, in the vast
majority of works, in the field of scheduling setups are not taken
into account at all. This applies both to single and multi-machine
problems and to different goal functions.

Cyclic problems belong to unique, relatively little researched
subclass of scheduling problems. However, more and more practi-
tioners and theorists show interest in the above issues mainly due
to their great practical importance and the attempt to overcome
difficulties in constructing relatively efficient algorithms. Strong
NP-hardness of the simplest versions of the above problem limits
the scope of applications of exact algorithms only to instances of
small size.

In this paper a multi-machine cyclic production system is con-
sidered, in which any element of the fixed batch (mix) passes suc-
cessively through each of the machines (permutation flow shop,
see Nowicki & Smutnicki (1996) and Grabowski & Wodecki
(2004)). Between successively produced elements there must be
a setup of machines performed. The problem consists in finding
minimization of cycle time, i.e. the time after which the next batch
of the same elements may be produced. There will be proven strong
NP-hardness already for some special case of the problem under
consideration. The hardness of the problem may be confirmed by
the fact that some simplified version boils down to solving the
problem of a traveling salesman. For this reason, in order to effec-
tively determine solutions a fast approximate algorithm is used.
There will be also the so called ‘block elimination properties’ pro-
ven which will be used in the construction of tabu search algo-
rithm. They provide an indirect search of certain subsets of
solution space not only accelerating calculations, but also, at the
same time, improving quality of designated solutions.
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Continuous flow production systems are among the most com-
monly encountered in industry. Everywhere where the production
process consists of the following successive stages, one deals with
such systems. Each stage of production is realized in a separate slot
supplied with specialized machinery. In the literature, there are
also other names describing this problem such as: a hybrid flow-
shop system or a flexible production line. The hybrid flow-shop
problem with setups was considered, among many others, in the
works (Bo _zejko, Gniewkowski, Pempera, & Wodecki, 2014;
Cavory, Dupas, & Goncalves, 2005; Caggiano & Jackson, 2008;
Dbrowski, Pempera, & Smutnicki, 2007; Fournier, Lopez, & Lan
Sun Luk, 2002; Kampmeyer, 2006; Sawik, 2014; Sawik, 2012).

The work consists of six chapters. The first and the second chap-
ter, based on literature results, include a brief introduction and
basic definitions related to cyclic scheduling tasks. The next two
chapters constitute the new, genuine results of the authors. There
are presented and proven the so called ‘block properties’ enabling
elimination of certain elements from the neighborhood of tabu
search algorithm. The last two chapters include the results of com-
putational experiments and conclusions.
2. Problem formulation

Considered in the paper system of manufacturing is an exten-
sion of strongly NP-hard, classical in theory of scheduling, permuta-
tion flow problem (denoted in literature by F�jjCmax). It can be
formulated as follows:

Problem: There is given a set of n tasks J ¼ f1;2; . . . ;ng, to be
carried out recurrently (in a repeated manner) on machines from
the set M¼ f1;2; . . . ;mg. Any task should be performed consecu-
tively, on each m machine 1;2; . . . ;m (technological line). The task
j 2 J is a sequence m of operations O1;j;O2;j; . . . ;Om;j. The operation
Ok;j corresponds to the activity of execution of j task on machine k,
in time pk;j (k ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n). After completion of cer-
tain operation and before the start of the next one there must be a
setup of machine performed. Let sk

i;j ðk 2 M; i – j i; j 2 J Þ be a time
of a setup of machine k between operation Ok;i and Ok;j. There must
be the order of tasks execution (the same on each machine) desig-
nated, which minimizes cycle time, i.e. the time of the beginning of
tasks execution from the set J in the next cycle. The following
restrictions must be fulfilled:

(a) each operation can be performed only by one determined by
the production process, machine,

(b) no machine can perform at the same time more than one
operation,

(c) production process order of operations execution must be
preserved,

(d) execution of any operation cannot be interrupted before its
completion,

(e) between successively executed, on the same machine, oper-
ations there must be a setup performed,

(f) each task is performed sequentially after the completion of
cycle time.

The set of tasks J executed in a single cycle is called (minimal
part set) – MPS. MPSs are processed directly one after the other
in a cyclic manner. In each of the MPSs the tasks from the set J
are performed on each machine in the same order (permutation
flow shop). Thus, any order of tasks on machines can be repre-
sented by a permutation p ¼ ðpð1Þ; . . . ;pðnÞÞ of elements from
the set J . Let U be the set of all such permutations.

The considered in the paper problem boils down to such deter-
mining of the tasks permutations ( i.e. moments of tasks execution
start on machines that meet the constraints (a)–(f), that the cycle
time (time after which any task is performed in the next MPS-e)
was minimal. In brief, this problem will be denoted by CFS.

2.1. Mathematical model

Let p 2 U be an order of tasks execution on machines (the same
for all MPSs). By ½Sh�m�n it is denoted the matrix of the beginning of
tasks execution in h-th MPS, where Sh

i;pðjÞ is the starting time of task
pðjÞ on machine i in h-th MPS. It is assumed that not only the
sequence of tasks is cyclically repeated in each of the MPSs, but
that timetable of system operation (i.e., execution of the following
MPSs) is cyclic. This means that there is a constant (period) TðpÞ
such that

Shþ1
i;pðjÞ ¼ Sh

i;pðjÞ þ TðpÞ; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n; h ¼ 1;2; . . . ð1Þ

The period TðpÞ is undeniably dependent on permutation p and is
called cycle time of the system for the permutation p 2 U. The min-
imum value TðpÞ will be called minimum cycle time and will be
denoted by T�ðpÞ.

Optimal value of time of the cycle T�ðp�Þ (solution to the prob-
lem CFS) can be determined by solving the following optimization
task: designate

T�ðp�Þ ¼minfT�ðpÞ : p 2 Ug; ð2Þ

with constraints:

Sh
i;pðjÞ þ pi;pðjÞ 6 Sh

iþ1;pðjÞ; i ¼ 1; . . . ;m� 1; j ¼ 1; . . . ;n; ð3Þ

Sh
i;pðjÞ þ pi;pðjÞ þ si

pðjÞ;pðjþ1Þ 6 Sh
i;pðjþ1Þ; i ¼ 1; . . . ;m; j

¼ 1; . . . ;n� 1; ð4Þ

Sh
i;pðnÞ þ pi;pðnÞ þ si

pðnÞ;pð1Þ 6 Shþ1
i;pð1Þ; i ¼ 1; . . . ;m; ð5Þ

Shþ1
i;pðjÞ 6 Sh

i;pðjÞ þ T�ðpÞ; i ¼ 1; . . . ;m� 1; ð6Þ

where h ¼ 1;2; . . ..
The last constraint (6) is characteristic for cyclic production as it

determines the relationship between beginning times of tasks exe-
cution in successively performed MPSs.

Without loss of generality, we can assume that the starting time
of the first task performance on the first machine in the first MPS is
S1

1;pð1Þ ¼ 0. For a fixed permutation p 2 U and the first MPS, by

TkðpÞ ¼
Xn�1

i¼1

ðpl;pðiÞ þ sk
pðiÞ;pðiþ1ÞÞ þ pl;pðnÞ þ sk

pðnÞ;pð1Þ ð7Þ

it is denoted the time of the tasks execution in order p, together
with setups on k-th machine (this sum also includes setup time
between the last operation pðnÞ of the first MPS, and the first
pð1Þ operation of the second MPS). In short, this time will be called
k-th peak.

It is easy to see that for permutation of tasks p 2 U minimum
cycle time is

T�ðpÞ ¼maxfTkðpÞ : k ¼ 1;2; . . . ;mg: ð8Þ
2.2. The problem with zero setup time

Let us consider a simplified version of the problem CFS, in
which machine setup times, between successively performed oper-
ations, are equal to zero. Thus, for any permutation p 2 U;
sk
pðiÞ;pðiþ1Þ ¼ 0; i ¼ 1;2; . . . ;n� 1 and sk

pðnÞ;pð1Þ ¼ 0; k ¼ 1;2; . . . ;m.
Then (7), time of the operation execution by k-th machine is



Fig. 1. Gannt chart for the two first MPSs.
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TkðpÞ ¼
Xn

i¼1

pk;pðiÞ ð9Þ

and does not depend on the order of tasks p execution. It is easy to
notice that in this case the optimum cycle time

T�ðp�Þ ¼maxfTkðpÞ : k ¼ 1;2; . . . ;mg; ð10Þ

where p is any permutation of tasks from the set J . Value T�ðp�Þ
may be determined in OðnmÞ time.

Fig. 1 shows a fragment of Gantt chart for the first two MPS-s of
CFS problem with zero setup times. The optimal cycle time
T�ðp�Þ ¼ T (maximum in equality (10)) is achieved for k-th
machine.

3. Properties of the problem

In this section certain properties are proved. They can be used
in the construction of algorithms used for solving cyclic flow shop
problem with machine setup providing an indirect search of some
subsets of solutions space. In the following part of the work it is
assumed that machine setup times are symmetric and satisfy the
triangle condition.

3.1. Designation of cycle time

Let p 2 U be a fixed permutation of tasks. Since the order of
tasks execution in the frames of each MPS is the same, then it is
sufficient to determine the starting point of the execution of tasks

Sh
k;pðiÞ for the first MPS and make the appropriate reallocation of size

kTðpÞ. In this way the starting points of tasks in the next MPSs are
obtained.

Fig. 2 shows a fragment of Gantt chart for the first two MPSs. It
was assumed that the maximum of the equality (8) was achieved
for k-th machine.

Designation of optimal cycle time for the flow shop problem
with machine setup boils down to determining of the optimal per-
mutation p�, for which

T�ðp�Þ ¼minfT�ðpÞ : p 2 Ug; ð11Þ
Fig. 2. Gantt chart for the first two MPS
where

T�ðpÞ ¼maxfTlðpÞ : l ¼ 1;2; . . . ;mg: ð12Þ

Let us assume that the maximum in Eq. (12) has been achieved for
k-th machine, i.e. T�ðpÞ ¼ TkðpÞ. The sequence of machine operating
time (peaks) T1ðpÞ; T2ðpÞ; . . . ; TmðpÞ is considered. It is symbolically
shown in Fig. 3.

The necessary condition for reducing minimum cycle time T�ðpÞ
is the reduction of the maximum peak TkðpÞ. In order to achieve it,
for k-th machine ðk 2 MÞ a symmetric full graph

Hk ¼ hV ; E; p; si; ð13Þ

with the burdened vertices and edges was constructed, wherein:

� set of vertices: V ¼ J ,
� set of edges: E ¼ ffv ;ug : v – u; v ;u 2 Jg,
� weighs of vertices: p : V ! R; pðvÞ ¼ pk;v v 2 V ,
� weighs of edges: s : E! R; 8e 2 E; sðeÞ ¼ sk

e .

Weights of vertices are equal to times of operation execution,
whereas weighs of edges – equal to setup times.

A part of the structure of graph Hk with sample weights of ver-
tices and edges is shown in Fig. 4.

Lemma 1. For permutations of tasks p ¼ ðpð1Þ;pð2Þ; . . . ;pðnÞÞ, time
of execution of tasks TkðpÞ (7) on k machine is equal to the length
LkðpÞ of Hamiltonian cycle PkðpÞ ¼ ðpð1Þ;pð2Þ; . . . ;pðnÞ;pð1ÞÞ in
graph Hk; 2 M.
Proof. The proof is immediate. It follows directly from the defini-
tion (7) of operating time of machine TkðpÞ and the Hamiltonian
cycle length LkðpÞ. h
Lemma 2. Permutation b 2 U is the optimal order of tasks execution
on k-th machine (i.e., it minimizes value (7)) if and only if the
sequence of vertices P�k ¼ ðbð1Þ; bð2Þ; . . . ; bðnÞ; bð1ÞÞ is traveling sales-
man cycle in the graph Hk; k 2M.
s for the problem of machine setup.



Fig. 3. Values TkðpÞ; k ¼ 1;2; . . . ;m.
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Proof. Since the traveling salesman problem is Hamiltonian
cycle with minimum length, the proof follows directly from
Lemma 1. h

Let L�k be the optimal length of a traveling salesman cycle P�k in
graph Hk; k ¼ 1;2; . . . ;m.

Remark 1. For two different machines k i l (k – l; k; l 2M) task
execution times LH

k ¼ LH

l or LH

k – LH

l .
Remark 2. The optimum value of the cycle time

T�ðp�ÞP minfLH

k : k ¼ 1;2; . . . ;mg: ð14Þ
Theorem 1. If the time of the tasks execution are the same (i.e.
Oi;j ¼ const; i 2 M; j 2 J ) and times of machine setups between
operations on each machine are the same (sk

i;j ¼ si;j; k 2M; i – j;
i; j 2 J ), then the problem of finding the optimal cycle time is strongly
NP-hard.
Proof. In this case, any two graphs Hk i Hl ðk – l; l ¼ 1;2; . . . ;mÞ
are identical, the lengths of a traveling salesman cycles in these
graphs are the same. It is easy to see (using the inequality (14))
that designation of an optimal cycle time is reduced to designation
of a traveling salesman cycle in any graph Hk 2 M, for example, in
H1. Thus, the problem is strongly NP-hard. h
Fig. 4. Part of Hk graph.
Proposal 1. Problem CFS considered in the paper is strongly
NP-hard.

Let T�ðpÞ be the minimum cycle time for a permutation p 2 U.
Let us also assume that TkðpÞ is the dominant peak. Therefore

T�ðpÞ ¼ TkðpÞ ¼ LkðpÞ;

where LkðpÞ is the length of Hamiltonian cycle
ðpð1Þ;pð2Þ; . . . ;pðnÞ;pð1ÞÞ in the graph HkðpÞ. Therefore, ‘in order
to shorten the cycle time TðpÞ we must reduce the value of the domi-
nant peak, thus – reduce the length of Hamiltonian cycle in the graph
HkðpÞ’.

Reducing of the length of Hamilton cycle in a graph Hk

requires generation from p of the new permutation, i.e. it
requires a change of the position of some elements in p. It should
be checked whether, after this change, there is no, on any of the
machines, new (larger) dominant peak. The ideas of the algo-
rithm for determining optimal cycle time T�ðp�Þ (solution to the
problem CFS) based on the above considerations, can be put
down as follows:

p – current solution;
Step 1:

let TkðpÞ ¼ maxfTiðpÞ : i ¼ 1;2; . . . ;mg; fmaximum peakg
Step 2:

generate from p permutation b
swapping position of certain elements in p; fmove executiong

Step 3:
if

TiðbÞ < TkðpÞ; i ¼ 1;2; . . . ;m; i – k fimprovementg
then

p b;
if (end condition) then STOP else go to Step 1.

In the following part of the paper it is proven that certain moves
(which do not reduce the dominant peak) can be omitted.

3.2. Tasks blocks

Let p�k ¼ ðp�kð1Þ;p�kð2Þ; . . . ;p�kðnÞ;p�kð1ÞÞ, be a traveling salesman
cycle in the graph HkðpÞ; k 2M. It is an optimal sequence (due
to sum of times) of tasks execution on k-th machine. This permu-
tation will be called a pattern for k-th machine.

Let

B ¼ ðpðaÞ;pðaþ 1Þ; . . . ;pðbÞÞ; ð15Þ

be a sequence of occurring immediately after one another
tasks in permutation p 2 U; p�k – pattern for k-th machine
and u; v ðu – v; u; v ¼ 1; . . . ;nÞ a pair of positions of elements
such that:

W1: pðaÞ ¼ p�kðuÞ;pðaþ1Þ ¼ p�kðuþ1Þ; . . . ;pðb�1Þ ¼ p�kðv �1Þ;
pðbÞ ¼ p�kðvÞ, lub

W2: pðbÞ ¼ p�kðuÞ;pðb�1Þ ¼ p�kðuþ1Þ; . . . ;pðaþ1Þ ¼ p�kðv �1Þ;
pðaÞ ¼ p�kðvÞ

W3: B is the maximum subsequence due to the fact that it can-
not be enlarged either by an element pða� 1Þ, or by
pðbþ 1Þ, satisfying the constraints W1or W2).

If the sequence of tasks (15) in a permutation p satisfies the
conditions W1 and W3 or W2 and W3, then we call it a block on
k-th machine (k 2 M).

If the number of elements is b� a P 2, then such block without
the first and the last element is called internal block.

Below an algorithm for determining permutation p, of the first
block on k-th machine is presented.



Fig. 5. Gantt chart for the k-th machine.
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Algorithm. A-block

Input: permutation p ¼ ðpð1Þ;pð2Þ; . . . ;pðnÞÞ; p�k – pattern;
Output: subsequence (block)

pT ¼ ðpðlÞ;pðlþ 1Þ; . . . ;pðt � 1Þ;pðtÞÞ;
Let pðlÞ be the first element in p such that
pðlÞ ¼ p�kðjÞ for certain j ð1 6 j 6 nÞ;
pT  pðlÞ;
k l;
while j < n do

begin

if pðt þ 1Þ ¼ p�kðjþ 1Þ then
pT  ðpT ;pðt þ 1ÞÞ;
t  t þ 1; j jþ 1;

end.

The computational complexity of the algorithm is OðnÞ.
Theorem 2. For any machine there is a break of permutation p 2 U
into blocks.
Proof. For a fixed machine k 2 M, considering the subsequent ele-
ments in the permutation p (starting from the first pð1Þ) and using
the algorithm pð1Þ) we designate subsequence ðpð1Þ; . . . ;pðsÞÞ –
which constitutes the first block. Then, this procedure is continued
(i.e., by re-using of the A-block algorithm) starting from the ele-
ment of pðsþ 1Þ.

Let B be a sequence of subpermutations received as a result of
the above described procedure. It is easy to show that B contains
sequences of elements from the permutation p such that.

(1) elements B are blocks,
(2) subsequences from B have different elements,
(3) each element from the set J belongs to certain subsequence

from B.

Therefore B is a break of p into blocks, which completes the
proof of the theorem. h

The algorithm of partitioning n-element permutations of tasks
into blocks has a computational complexity OðnÞ.

Example 1. An instance of the CFS problem with a number of tasks
n ¼ 10 is considered. Let us assume, that there is a maximum peak
on k-th machine for a tasks order p ¼ ð1;2;3;4;5;6;7;8;9;10Þ. A
part of the Gantt chart for the first MPS for this machine is shown
in Fig. 5. Solid lines represents operations (machines work), dotted
lines – setups. Numbers over arcs represent operations processing
times of setups times, respectively. All other setups times between
operations executed on this machines equal to 1. For a tasks
execution order p the time of the machines work (with its setup
times after execution of the last operation) and before the
execution of the first operation in the next MPS is TkðpÞ ¼ 25.
The pattern, i.e. optimal tasks schedule for this machine, is a
permutation

p� ¼ ð10;3;4;5;2;6;1;9;8;7Þ:

Value of the k-th peak Tkðp�Þ ¼ 21. Applying an A-block algorithm a
partition B ¼ ðB1;B2;B3; B4;B5;B6Þ of the permutation p into blocks
was made. This partition contains:

1. four one-elementary blocks: B1 ¼ pð1Þ; B2 ¼ pð2Þ; B4 ¼ pð6Þ;
B6 ¼ pð10Þ,

2. a block B3 ¼ ðpð3Þ;pð4Þ;pð5ÞÞ fulfilling constraints W1 and W3,
where a ¼ 3; u ¼ 2 and b ¼ 5; v ¼ 4,

3. a block B5 ¼ ðpð7Þ;pð8Þ;pð9ÞÞ fulfilling constraints W2 and W3,
where a ¼ 7; u ¼ 8, and b ¼ 9; v ¼ 10. h
Lemma 3. If ðv1;v2; . . . ;vn;v1Þ is a traveling salesman cycle in graph
Hk ðk 2 MÞ, then ðv t; v tþ1; . . . ;v lÞ ð1 6 t < l 6 nÞ is the shortest path
from vertex v t to v l including elements from set fv tþ1;v tþ2; . . . ;v l�1g.
Proof. Let CH ¼ ðv1;v2; . . . ;vn;v1Þ be a traveling salesman cycle in
graph Hk ðk 2 MÞ. We consider a subsequence (path) Ct;l ¼
ðv t ;v tþ1; . . . ;v lÞ ð1 6 t < l 6 nÞ from sequence CH .

It is assumed indirectly that Ct;l is the shortest path in a graph
Hk from vertex v t to v l including all vertices from a set
W ¼ fv tþ1;v tþ2; . . . ;v l�2;v l�1g. There is a path dt;l ¼
ðv t ;v 0tþ1;v 0tþ2; . . . ;v 0l�2;v

0
l�1v lÞ; v 0i 2W from vertex v t to v l such

that _ze LðCt;lÞ > Lðdt;lÞ (where Lð�Þ is the length of the path). Then,
putting CH into traveling salesman cycle, by replacing path Ct;l,
with path dt;l we obtain Hamiltonian cycle with the length smaller
than traveling cycle length CH , which stays in opposition with the
indirect assumption. h

Theorem 3. If permutation b was generated from permutation p by
swapping the order of elements in certain internal block on machine
k 2M, then

TkðbÞP TkðpÞ:

Proof. In the proof, use Lemma 3. h

From Theorem 3 stems the so called ‘block elimination property’.
By generating neighborhoods in tabu search algorithm, solutions
determined by changing the order of elements in internal block
can be skipped. This is due to the fact that they do not offer any
immediate improvement of solution. This feature greatly speeds
up algorithm action.

4. Tabu search method

In order to solve the problem of determining optimal cycle time
there will be tabu search (TS) algorithm used. On the basis of the
current publications it can be stated that it is currently one of
the most effective, and at the same time – deterministic, methods
for construction of approximation algorithms, which guarantee
repetitiveness of computations.
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The main idea of the TS method involves starting from an initial
job schedule and searching through its neighborhood for a solution
with the lowest value of the cost function. The search then is
repeated starting from the best solution found and the process is
continued. One of the main ideas of tabu search algorithm is the
use of a forbidden (so called tabu) moves list to avoid cycling, over-
coming local optimum, or continuing the search in a too narrow
region and to guide the search process to the solutions regions
which have not been examined. The tabu list records some attri-
butes of the performed moves. The elements of this list, for the cur-
rent iteration, determine the subset of forbidden solutions. A move
having prohibited attributes is forbidden, although, it can be per-
formed if it is sufficiently profitable.

An essential element of the tabu search method is neighbor-
hood, i.e., to be specific – method of how it is generated and
searchable. In order to reduce the execution time of a single itera-
tion, the subneighborhoods generated with the use of ‘block elim-
ination properties’ will be used.

4.1. Generating neighborhoods

The literature describes many moves based on swapping the
execution order of tasks. On the basis of Theorem 3 one can draw
the assumption that ‘insert’ type of move (i-move) involving swap-
ping tasks before or after the block, may be an effective method of
neighborhood generation for the problem under consideration.
Generally, such move boils down to swapping of tasks from its
position in the permutation into the position – before or after
another task. More specifically, for various positions t; l in a permu-
tation p 2 U insert type of move (abbreviated to i-move) it

l gener-
ates a new permutation pt

l ¼ it
l ðpÞ by swapping task pðtÞ from

position t to position l in p. Exactly such moves are described
and used in the algorithms described in the works of year
Wodecki (2009) and Bo _zejko and Wodecki (2008).

If IðpÞ is the set of i-moves then a set

NðIðpÞÞ ¼ fpt
l : it

l 2 IðpÞg

is neighborhood of permutation p 2 U.
The number of elements of the neighborhood (cardinality of the

set NðIðpÞÞ) generated by i-moves is ðn� 1Þ2. In tabu search algo-
rithm there will be subneighborhoods used which are based on
block elimination properties. As computational experiments have
shown, their application results in a significant reduction of calcu-
lation time (further acceleration can be achieved with the use of
multi-moves (Bo _zejko & Wodecki, 2007)).

For definiteness, in the following part of this chapter we assume
that the maximum peak is on k-th machine. Therefore, we omit the
index of the machine. For any block Br ¼ ðpðarÞ;pðarþ1Þ; . . . ;

pðbrÞÞ r ¼ 1;2; . . . ; s of break B of permutation p, we consider a
set of i-internal moves I inðBrÞ, which swap only the order of
elements in this block, i.e. on positions ar þ 1; ar þ 2; . . . ; br � 1.
Then

I inðpÞ ¼
[s

r¼1

I inðBrÞ;

is a set of all the internal moves in permutation p. Directly from
Theorem 3 stems the possibility of eliminating the moves which
generate such elements of the neighborhood that are not better
than p.

Property 1. If permutation pt
l is generated from p by performing

internal move it
l 2 I inðpÞ, then Tðpt

l ÞP TðpÞ.

Thus, taking into account the possibility of a direct improve-
ment of minimum cycle time T�ðpÞ, we can skip all elements of
neighborhood generated by the moves from the set I inðpÞ.
For r-th block

Br ¼ ðpðarÞ;pðar þ 1Þ; . . . ;pðbkÞÞ; r ¼ 1;2; . . . ; s;

in permutation p we define sets of tasks of candidates to be
swapped in the frames of i-move

J r
af ¼ fpð1Þ; . . . ;pðar � 1Þ;pðbr þ 2Þ;pðbr þ 3Þ; . . . ;pðnÞg;
J r

bf ¼ fpð1Þ; . . . ;pðar � 3Þ;pðar � 2Þ;pðbr þ 1Þ;pðbr þ 2Þ; . . . ;pðnÞg:

These sets contain elements that will be swapped ‘behind’ or ‘before’
appropriate block, i.e., behind the last or before the first element of
the block. On this basis, we define a set of i-moves behind block

I r
af ðpÞ ¼ fi

x
l : pðxÞ 2 J r

af g;

and a set of moves before the block

I r
bf ðpÞ ¼ fi

x
t : pðxÞ 2 J r

bf g:

Certainly moves of the sets I r
af ðpÞ and I r

bf ðpÞ can (but not necessar-
ily) bring improvement in the present value of the minimum cycle
time.

On the basis of the presented considerations in the tabu search
algorithm there will be used a set of moves

IðpÞ ¼
[s

r¼1

½I r
af ðpÞ [ I r

bf ðpÞ�; ð16Þ

generating subneighborhood NðIðpÞÞ of permutation p. The size of
this neighborhood does not depend directly on the number of tasks
n and m machines.

Example 2. The first element of the block B3 ¼ ðpð3Þ;pð4Þ;pð5ÞÞ
takes position a3 ¼ 3 in the permutation p, the last element takes
position b3 ¼ 5. Hence the set of tasks – candidates to move
directly after the block B3

J 3
af ¼ fpð1Þ;pð2Þ;pð7Þ;pð8Þ;pð9Þ;pð10Þg;

and before the block

J 3
bf ¼ fpð1Þ;pð6Þ;pð7Þ;pð8Þ;pð9Þ;pð10Þg:

Corresponding moves sets take the form of

I3
af ¼ fi

pð1Þ
2 ; ipð2Þ2 ; ipð7Þ2 ; ipð8Þ2 ; ipð9Þ2 ; ipð10Þ

2 g

for moves after the block, and

I3
bf ¼ fi

pð1Þ
6 ; ipð6Þ6 ; ipð7Þ6 ; ipð8Þ6 ; ipð9Þ6 ; ipð10Þ

6 g

for moves befor the block. Similarly, one can define sets of tasks and
moves for other blocks. h

Let us consider the description of the methods of determining
the tasks that should be moved behind the last pðbrÞ (or before
the first pðarÞ) element of r-th block. According to the strategy of
neighborhood search in tabu search method, the search concerns
such a move ix

l 2 IðpÞ) that generates a permutation px
l of the

smallest possible value of the dominant peak (i.e. current mini-
mum value of the cycle time).

To simplify the notation, the following assumptions were made:

(i) current permutation pðiÞ ¼ ð1;2;3; . . . ;nÞ,
(ii) we consider r-th block B ¼ ða; aþ 1; . . . ; b� 1; bÞ.

In accordance with previously adopted assumption the indices
of machines (e.g. marking setup times) are omitted.

For any move ivl 2 Iaf ðpÞ of B block designation

Daf ðv; lÞ ¼ sv�1;vþ1 � sv�1;v � sv;vþ1 þ sl�1;v þ sv;l

� sl�1;l is introduced: ð17Þ



Fig. 6. Execution of the move ipð2Þ6 .
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Similarly, for move ivl 2 Ibf ðpÞ

Dbf ðv; lÞ ¼ sv�1;vþ1 � sv�1;v � sv;vþ1 þ sl�1;v þ sv;l � sl�1;l: ð18Þ

The computational complexity of determining the value of
Dkðv ; lÞ; k 2 faf ; bfg is Oð1Þ. The next two theorems show the rela-
tionships between the value of the peak of permutation p and per-
mutations of the neighborhood generated by the move of a set IðpÞ
defined in (16).

Theorem 4. If permutation pl
v was generated from p 2 U by making

a move il
v 2 Iaf ðpÞ, then the value of peak is

Tðpv
l Þ ¼ TðpÞ þ Daf ðv; lÞ:
Proof. It is enough to use the definition of peak (7) and swapping
(17). h

Similarly, the moves, to be more specific – permutations – gen-
erated by these moves from the set Ibf ðpÞ are estimated.

Example 3. Executing a move ipð2Þ6 2 I3
af (i.e., moving a task

pð2Þ 2 J 2
af in position 6-th in the permutation p) (directly after

the block B3) one can generate the new permutation ipð2Þ6 ðpÞ ¼ ppð2Þ
6

from p. This is symbolically shown in Fig. 6.

Taking advantage of Theorem 4 it is possible to calculate the
value of the expression (17)

Daf ðpð2Þ;6Þ ¼ spð1Þ;pð3Þ � spð1Þ;pð2Þ � spð2Þ;pð3Þ þ spð2Þ;pð6Þ þ spð5Þ;pð2Þ

� spð5Þ;pð6Þ

¼ 1� 1� 2þ 1þ 1� 2 ¼ �2:

Therefore, the value of a peak for the generated permutation

Tkðppð2Þ
6 Þ ¼ TkðpÞ þ Daf ðpð2Þ;6Þ ¼ 25� 2 ¼ 23:

So, the execution of the move ipð2Þ6 generates a permutation with
lower peak value for the k-th machine. h

Theorem 5. If permutation pl
v was generated from p 2 U by making

a move il
v 2 Ibf ðpÞ, then the value of peak is

Tðpv
l Þ ¼ TðpÞ þ Dbf ðv; lÞ:
Proof. Just use the definition of peak (7) and swapping (18). h

It is easy to see that with the use of Theorem 4 or 5) the max-
imum peak value for any machine generated by i-move of permu-
tations can be determined.

By swapping the task pðxÞ 2 J af (or pðxÞ 2 J bf ) behind the last
element of block b (or before the first element a) in p, a permuta-
tion px

b (or px
a) is generated, for which we can determine (using

respectively from Theorem 4 or 5) peak values on each machine.
Thus, the values DkðxÞ; k 2 faf ; bfg can be used as a criterion for
the selection from the neighborhood of the task to be swapped.
Generally, a move with a minimum value of Dkðv; lÞ. is selected.
In this way a permutation maximally reducing the peak value is
generated.

Generated permutation (element of neighborhood) has the
smallest cycle time (i.e., the least dominant peak).
4.2. Pattern designation

For the determination of the blocks on k-th machine there is a
pattern required. Its designation comes down to solving the
problem of traveling salesman in a graph Hk. The solution to this
problem is NP-hard. Therefore, as the first there will be Algorithm
4.2-opt applied, one of the most popular approximate algorithms
solving the traveling salesman problem.

Algorithm. 2-opt

Step 1:
Determine starting solution (any Hamiltonian cycle);

Step 2:
Check if there is a pair of edges, where the exchange for

another
generates Hamiltonian cycle of shorter length.

If a pair of edges exists, then designate new (shorter)
Hamiltonian cycle;

As long as it is possible, perform Step 2.

On the basis of the analysis of various approximation algo-
rithms it was stated that the mean relative error of this algorithm,
in reference to the best currently known solutions is about 5%.
Algorithm has complexity of Oðn2Þ.

As a result of application of an approximation algorithm to
solve traveling salesman problem assumptions of Lemma 3 cannot
be met. In consequence, from the neighborhood of permutation
p 2 U ‘good’ elements (i.e, giving an improvement of the minimum
cycle time) may be eliminated. The disadvantage of this problem
can be partially improved by using, at a small number of vertices,
the exact algorithm to solve traveling salesman problem, or even
better – approximate algorithm (e.g., 3-opt, nevertheless, with
more complex computation).

5. Computational experiments

There were computational experiments carried out whose aim
was to assess the effectiveness of the modified tabu search algo-
rithm from work (Nowicki & Smutnicki, 1996). The study was per-
formed in two phases. In the first phase the effect of block
properties on the efficiency of the algorithm was tested, whereas
in the second – execution time of algorithm for practical
applications.

The algorithm was implemented in C++ language in Visual Stu-
dio 2005 and was tested on a Compaq 8510w Mobile Workstation
PC computer with Intel Core 2 Duo 2.60 GHz operating Microsoft
VISTA system.

The calculations were performed on 960 examples for the
hybrid flow-shop problem included in the work (Ruiz & Stützle,
2008). Gathered data was divided into 25 groups. Each consists
of examples of the same number of tasks and machines. Individual
groups differ from one another in the way of generation and/or the
number of machines or tasks. Start solutions were set with the use
of a simple construction algorithm based on the method of priority
scheduling. The algorithm’s operation can be divided into two
phases. Firstly, for each slot there is a list of ordered tasks deter-
mined, whereas in the second phase the list is divided into frag-
ments designating the sequence of tasks performance on each
machine. Construction of the list in the first phase starts with
any task. In the following step, there is one task requiring the
shortest setup added to the list. Finally, a preliminary order of tasks
on machines is obtained by assigning of each list to the first
machine in the correct slot. In each iteration of the second phase
there is the critical machine designated, i.e. a machine which



Table 3
Computational time for fixed cost function value.

n�m t (s) tB (s) t� (s) t�B (s) tSA

20� 5 2.24 4.24 1.90 5.33 20.74
20� 10 3.01 0.58 2.44 0.24 36.07
20� 20 4.67 0.23 3.53 0.28 67.36
50� 5 35.72 66.68 28.29 68.53 2.72
50� 10 48.42 0.80 34.27 0.60 173.39
50� 20 73.87 0.90 46.86 0.56 10.17
100� 5 292.08 10.16 220.26 7.72 30.36
100� 10 391.91 11.10 266.12 7.23 57.92
100� 20 604.70 12.86 358.37 6.72 115.62
200� 10 3212.17 141.63 2067.67 85.28 678.03
200� 20 5255.53 186.79 2754.64 79.03 1591.29

Average 902.21 39.63 525.85 23.77 253.06
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determines the cycle time. The last operation performed on this
machine is moved to the first position of the next machine in the
same slot. The process is continued until the cycle time is
shortened.

As a measure of the algorithm’s A efficiency there was a
Percentage Relative Deviation (PRD) of a goal function value
assumed for the best solution pA determined the algorithm in
relation to the reference solution pref :

PRDðpAÞ ¼ 100%ðTðpAÞ � Tðpref ÞÞ=Tðpref Þ: ð19Þ

The algorithm from work (Nowicki & Smutnicki, 1996) was
implemented in two versions: TSF – with a full neighborhood, gen-
erated by the moves from the setH and TSB – with a reduced envi-
ronment, generated through the moves from N .

There were calculations (of TSF and TSB algorithms) performed
for the length L ¼ 7 of the tabu list and 1000 iterations with neigh-
borhood of insert moves. For each example, as the reference solu-
tion, there was the best found solution adopted. The obtained
comparative results are shown in Tables 1–3.

For comparison, a canonical Simulated Annealing (SA) algo-
rithm was implemented. The following parameters of SA algorithm
have been used: n2 iterations with fixed temperature, neighbor-
hood of insert moves, harmonic cooling scheme. Table 1 presents
results for a fixed number of iterations (which equals 1000) of
the proposed algorithms TSF and TSB compared with SA algorithm.
Starting solutions were determined with the use of NEH (Nawaz,
Enscore, & Ham, 1983) algorithm. The following notions were
used:

� t – Execution time of a TSF algorithm without blocks.
� tB – Execution time of a TSB algorithm with blocks.
Table 1
Computational time and Percentage Relative Deviation for fixed number of iterations
(1000).

n�m t (s) tB (s) tSA PRD PRDB PRDSA

20� 5 2.24 0.80 0.73 �29.96 �32.74 �31.68
20� 10 3.01 0.92 1.21 �29.49 �31.65 �30.79
20� 20 4.67 1.18 2.29 �29.77 �30.68 �30.34
50� 5 35.72 17.68 8.85 �32.49 �34.08 �35.12
50� 10 48.42 21.96 17.16 �29.56 �34.48 �33.02
50� 20 73.87 28.28 33.59 �28.34 �31.76 �30.79
100� 5 292.08 181.84 67.79 �30.73 �36.71 �34.90
100� 10 391.91 203.82 134.73 �28.10 �33.59 �31.88
100� 20 604.70 266.44 273.44 �27.87 �31.63 �30.62
200� 10 3212.17 1791.06 1091.53 �26.70 �32.95 �31.49
200� 20 5255.53 2497.66 2645.24 �26.21 �31.11 �30.10

Average 902.21 455.60 388.78 �29.02 �32.85 �31.88

Table 2
The Percentage Relative Deviation for a fixed computations time.

n�m PRD PRDB PRD�B PRDSA

20� 5 �29.96 �32.71 �32.71 �31.47
20� 10 �29.49 �31.81 �31.81 �30.63
20� 20 �29.77 �31.04 �31.11 �30.37
50� 5 �32.49 �34.40 �34.40 �35.33
50� 10 �29.56 �34.67 �34.70 �33.15
50� 20 �28.34 �31.97 �31.99 �30.95
100� 5 �30.73 �37.15 �37.10 �34.91
100� 10 �28.10 �33.96 �34.00 �32.11
100� 20 �27.87 �31.98 �32.02 �30.60
200� 10 �26.70 �33.39 �33.42 �31.79
200� 20 �26.21 �31.39 �31.48 �30.13

Average �29.02 �33.13 �33.16 �31.95
� PRD – Percentage Relative Deviation to the starting solutions
determined by the NEH algorithm, for an algorithm without
blocks, fixed number of iterations.
� PRDB – Percentage Relative Deviation to the starting solutions

determined by the NEH algorithm, for an algorithm with blocks,
fixed number of iterations.
� PRDB – Percentage Relative Deviation to the starting solutions

determined by the NEH algorithm, for an algorithm with blocks,
fixed number of iterations.
� PRDSA – Percentage Relative Deviation to the starting solutions

determined by the NEH algorithm, for a Simulated Annealing
algorithm, fixed number of iterations.

As it can be observed, the results of TSB algorithm (with blocks)
outperforms TSF algorithm in both time and solution quality
issues. The TSB algorithm is almost two times faster than TSF
(902.21 vs. 455.60 s in average) and it obtains much better results
(�29.02 vs. �32.85 of average improvement starting NEH
solutions).

The t-Student test of statistical significance shows that the aver-
age value PRDB of the TSB algorithm is significantly lower than the
PRDSA with the standard significance level a ¼ 0:05 : H0 : m1 ¼ m2;

H1 : m1 < m2, where m1; m2 denote a PRD of TSB and SA algo-
rithms, respectively, for any set of test instances. The value of test
statistic equals to

t ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1s2

1þn2s2
2

nþ1þn2�2
1

n1
þ 1

n2

� �r ¼ �12:03;

where n1¼n2¼960; x1¼�32:85; x2¼�31:88; s2
1¼3:15; s2

2¼3:06.
The critical set for a¼0:05 is (1;�1;65� (from the normal distribu-
tion); the value of test statistic belongs to the critical set, so H0 is
rejected and the hypothesis H1 is taken which says that the PRDB

of the TSB algorithm is significantly lower than PRDSA.
Table 2 presents results for a fixed computational time (equals

computation time for 1,000 iterations of the algorithm without
blocks). There following notions were used:

� PRD – Percentage Relative Deviation to the starting solutions
determined by the NEH algorithm, for an algorithm without
blocks, 1000 iterations (chosen as a reference time – stop crite-
rion for further algorithms compared in Table 2).
� PRDB – Percentage Relative Deviation to the starting solutions

determined by the NEH algorithm, for an algorithm with blocks,
fixed computation time.
� PRD�B – Percentage Relative Deviation to the starting solutions

determined by the NEH algorithm, for an algorithm with blocks,
fixed computation time, with acceleration of the goal function
calculation.



Fig. 7. Comparison of TSF and TSB algorithms computing times with accelerator of
goal function calculation.
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� PRDSA – Percentage Relative Deviation to the starting solutions
determined by the NEH algorithm, for a Simulated Annealing
algorithm, for a fixed computation time.

As it can be observed, application of blocks gives additional
4.11% (�29.02% to �33.13%, in average) improvement of the PRD
of the TSB, comparing to TSF, considering fixed time of computa-
tions. Applying a goal function calculation accelerator gives addi-
tional 0.03% improvement of PRD (�33.13% to �33.16%). As in
previous, the t-Student test of statistical significance shows that
the average value of PRDB of the TSB algorithm is significantly
lower than the PRDSA for a fixed time of computations, with the sig-
nificance level a ¼ 0:05. For a test H0 : m1 ¼ m2; H1 : m1 < m2,
where m1; m2 denote a PRD of TSB and SA algorithms achieved
after a fixed time of computations, the value of test statistic equals
to t ¼¼ �14:78, where n1 ¼ n2 ¼ 960; x1 ¼ �33:16; x2 ¼ �31:95;
s2

1 ¼ 3:19; s2
2 ¼ 3:23. For the critical set (1;�1;65� we reject H0

and take the hypothesis H1 – the PRDB of the TSB algorithm is sig-
nificantly lower than PRDSA for a fixed computations time.

Table 3 presents time comparison for algorithms with fixed
solution quality – each algorithm stops after achieving (or exceed-
ing) assumed goal function value of the TSF algorithm with stop
criterion of 1,000 iterations. The following notions were used:

� t – execution time of a TSF algorithm without blocks,
� tB – execution time of a TSB algorithm with blocks,
� t� – execution time of a TSF algorithm without blocks, with

acceleration of the goal function calculation,
� t�B – execution time of a TSB algorithm with blocks, with accel-

eration of the goal function calculation.
� tSA – execution time of a SA algorithm.

It is visible, that application of blocks gives over 20-times short-
ening of the computation time (902.21 s of TSF to 39.63 s of TSB, in
average), taking under consideration computation time needed to
obtain a fixed quality of solutions. Similar situation appears after
using accelerator of the goal function calculation. Simulated
Annealing method needs the time which is over 10 times longer
than the time of TSB to obtain solutions with comparable level of
PRD. Fig. 7 show differences of computation times for each group
of benchmark instances.
6. Conclusions

The new block elimination criteria for the cyclic flow shop prob-
lem were proposed in this paper. We designed genuine problem
properties which enable obtaining good efficiency of the local
search algorithm. Computational experiments show both shorten-
ing of the computation time and improving of the quality of the
obtained solutions, as a result of application of the block properties
to the tabu search metaheuristic. The advantage is especially visi-
ble for large instances of the considered cyclic flow shop schedul-
ing problem.
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