
Computers & Industrial Engineering 95 (2016) 156–163
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Parallel metaheuristics for the cyclic flow shop scheduling problem
http://dx.doi.org/10.1016/j.cie.2016.03.008
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: wojciech.bozejko@pwr.edu.pl (W. Bo _zejko), mariusz.uchrons-

ki@pwr.edu.pl (M. Uchroński), mwd@ii.uni.wroc.pl (M. Wodecki).
Wojciech Bo _zejko a,⇑, Mariusz Uchroński b, Mieczysław Wodecki c

aDepartment of Control Systems and Mechatronics, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland
bWrocław Centre of Networking and Supercomputing, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
c Institute of Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 November 2015
Received in revised form 5 March 2016
Accepted 7 March 2016
Available online 16 March 2016

Keywords:
Scheduling
Parallel algorithm
Cyclic flow shop problem
Block properties
In the paper there was proposed a new method of detection of block properties for cyclic flow shop prob-
lem with machine setups that uses patterns designated for each machine by solving the adequate trav-
eling salesman problem. The proposed method is intended to be run in the environment of shared
memory in concurrent computations, such as coprocessors, GPU, or machines with multi-core CPUs.
The proposed method of accelerating the review of the neighborhood through the use of the blocks
was tested on two parallel metaheuristics: tabu search and simulated annealing.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, there has been observed a growing interest in cyclic
problems of tasks scheduling in both the environment of theorists
dealing with discrete optimization problems and in the environ-
ment of practitioners in the industry. Cyclic production is, in fact,
a very effective method in modern flexible manufacturing system
as it significantly simplifies control, i.e. a fixed schedule is
repeated in many periods. The most important benefit of the
method is its ability to produce, in predetermined intervals,
multi-assortment product mix resulting from customer demand.
This process provides not only systematic replenishment of usu-
ally relatively small inventory of customers but also generates a
systematic demand for both semi-finished or raw materials and
materials obtained from suppliers. This method simplifies the
management of supply chain. Another very important advantage
of cyclic production is relatively easy detection of anomalies dur-
ing manufacturing process which may indicate a deterioration of
either the quality parameters of the production system or manu-
factured products themselves.

In the world literature there are many studies concerning vari-
ous aspects of cyclic control in enterprises which manufacture
products on a mass scale. There are examples of application of cyc-
lic scheduling in various spheres of industry, transport and logis-
tics (e.g. Gertsbakh & Serafini, 1991; Kats & Levner, 2010;
Mendez, Cerda, Grossmann, Harjunkoski, & Fahl, 2006; Pinedo,
2005, 2008; Pinto, Barbosa-Póvoa, & Novais, 2005). Unfortunately,
the existing models and calculation tools enable determination of
the optimal (minimizing cycle time) control for production sys-
tems executing only a small number of tasks. In the work, there
is considered a cyclic flow shop problem with setup times. Strong
NP-hardness of many simple versions of cyclic scheduling prob-
lems, in particular, of the considered problem, limits the scope of
applications of exact algorithms to instances with a small number
of tasks, nevertheless, in this context of minimizing the cycle time,
both the design and the use of exact algorithms seems to be fully
justified (Brucker, Burke, & Groenemeyer, 2012). However, due to
the NP-hardness, in determination of satisfactory solutions there
are commonly fast approximate algorithms used based on local
search techniques, for example: simulated annealing (in parallel
version – Bo _zejko, Pempera, & Wodecki, 2015) or tabu search
(Bo _zejko, Uchron_ski, & Wodecki, 2015, 2014). Methods of this type
are usually based on a two-level decomposition of the problem:
the first – determining the optimal sequence of tasks (upper level)
and the second – multiple determining the minimum value of cri-
teria for a given sequence of tasks (bottom level). In case of the
conventional, non-cyclic scheduling problem, solution to the lower
level can be obtained in a time-efficient manner by analyzing a
specific graph. However, in case of the defined, in this paper, prob-
lem obtaining the solution to the lower level is a relatively time-
consuming process since, in general, it requires the solution of a
certain linear programming problem. Therefore, any special prop-
erties, including those that enable obtaining more efficient calcula-
tion of the cycle time, the search schedule and reduction of the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.03.008&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.03.008
mailto:wojciech.bozejko@pwr.edu.pl
mailto:mariusz.uchronski@pwr.edu.pl
mailto:mariusz.uchronski@pwr.edu.pl
mailto:mwd@ii.uni.wroc.pl
http://dx.doi.org/10.1016/j.cie.2016.03.008
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163 157
multiplicity of the locally browsed neighborhood or acceleration of
its browse, are very desirable.

In this paper, we propose the use of new properties, the so-
called blocks which reduce the number of solutions viewed
while generating the neighborhood executed by local search
algorithms, such as tabu search or simulated annealing. Determi-
nation of the blocks can be performed both sequentially and
simultaneously, using multiprocessor calculations environment.
Appropriate methods of construction are shown in this work
with the use of model PRAM machine equipment, which for
many years, has not only been the standard for the theoretical
verification of the computational complexity of the parallel algo-
rithms but also close to practice approximation of contemporary
parallel architectures.
2. Problem description

The cyclic manufacturing process, considered in the work, can
be formulated as follows: there is a set of n tasks given
J ¼ f1;2; . . . ;ng, which are to be performed in cycles (repeatedly)
on machines from the setM¼ f1;2; . . . ;mg. A given task should be
executed in a sequence, on each of the m machines 1;2; . . . ;m, in a
technological order. The task j 2 J is a sequence of m operations
O1;j;O2;j; . . . ;Om;j. The operation Ok;j corresponds to execution of
task j on machine k, in time pk;j (k ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n). After
the completion of a certain operation and before the start of the
next operation there should be setups of a machine performed.
Let ski;j ðk 2M; i– j i; j 2 J Þ be the setup time between the opera-
tion Ok;i and Ok;j.

A set of tasks executed in a single cycle is called PMS (minimal
part set). MPSs are processed cyclically one after another. The order
of tasks is to be determined (the same on each machine) in such a
way which minimizes the cycle time, i.e. the time of commence-
ment of the tasks from the set J in the next cycle. The following
restrictions must be fulfilled:

(a) each operation can be executed only by one machine,
(b) none of the machines can execute more than one operation

at the same time,
(c) the technological order of operations must be preserved,
(d) the execution of any operation cannot be interrupted before

its completion,
(e) each machine, between successively performed operations,

requires setup,
(f) each operation is executed sequentially (in successive MPSs)

after the completion of cycle time.

The considered problem relies in determination of the moments
of starting of the tasks’ execution on machines that meet the lim-
itations (a)–(f), so that the cycle time (the time at which the task is
executed in the next MPS) was minimal. Let us assume that in each
of the MPSs, on each machine, the tasks are executed in the same
order. Thus, in the cyclic schedule the order of tasks’ execution on
the machines can be represented by a permutation of the tasks in
the first MPS. In fact, on its basis, we can determine the starting
moments of tasks’ execution on the machines in the first MPS.
Increasing them by a multiplication of the cycle time, one gets
the starting moments of tasks’ execution in any of the MPS (the
starting moment of execution of any operations in the next MPS
should be increased by cycle time). Let U be the set of all permuta-
tions of the elements from the set of tasks J . Therefore, the consid-
ered in the work problem boils down to determining of
permutations of tasks (elements of the set U) which minimizes
the length of the cycle time. In short, this problem will be denoted
by CFS.
3. Mathematical model

Let ½Sk�m�n be the matrix of starting moments of tasks’ execution

of kth MPS (for the established order p 2 U), where Ski;j denotes the
starting moment of execution of task j on the machine i. We
assume that tasks in the next MPS-s are carried out cyclically. This
indicates that there is a constant TðpÞ (period) such that

Skþ1i;pðjÞ ¼ Ski;pðjÞ þ TðpÞ; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n; k ¼ 1;2; . . . ð1Þ
Period TðpÞ undoubtedly depends on permutation p and is called
time period of the system. The minimum value TðpÞ, for a fixed p,
will be called minimum cycle time and will be denoted by T�ðpÞ.
Since the order of tasks within the given MPS is the same, it is suf-
ficient just to designate the order of tasks p for a single (the first)
MPS and move it by the quantity k � TðpÞ; k ¼ 1;2; . . . on the time-
line. For the established order of execution of tasks p 2 U, optimum
value of cycle time T�ðpÞ can be determined by solving the follow-
ing optimization task:

T�ðpÞ ¼minfT : T 2 Rg; ð2Þ

Si;pðjÞ þ pi;pðjÞ 6 Siþ1;pðjÞ; i ¼ 1; . . . ;m� 1; j ¼ 1; . . . ;n; ð3Þ

Si;pðjÞ þ pi;pðjÞ þ spðj;pðjþ1ÞÞ 6 Si;pðjþ1Þ; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n� 1;

ð4Þ

Si;pðnÞ þ pi;pðnÞ þ spðn;pð1ÞÞ 6 Si;pð1Þ þ T; i ¼ 1; . . . ;m; ð5Þ

Siþ1;pðnÞ 6 Si;pð1Þ þ T; i ¼ 1; . . . ;m� 1: ð6Þ
Without loss of generality, it is possible to assume that the

starting moment of the first task’s execution on the first machine
is S1;pð1Þ ¼ 0. For any order of tasks in the first MPS and solving
the above linear programming task, it is possible to determine
the minimum cycle time in polynomial time. In case of an exact
algorithm (complete overview) the solution to CFS problem should
therefore be done for each of n! permutation – element of a set U.
The next chapter includes a presentation of an approximate solu-
tions method to the considered in this work problem.

4. Solution method

In many heuristic algorithms solutions to NP-hard problems are
constituted by reviewed neighborhoods, i.e. subsets of solution
space. In case where solutions to problems are permutations
neighborhoods are usually generated by insert or swap type moves
and their combinations (Bo _zejko & Wodecki, 2007). They consist in
changing positions of elements in the permutation. The number of
elements of such a neighborhood is at least nðn� 1Þ=2, where n is
the size of the data. In practical applications (with large n), viewing
the neighborhood is the most time consuming element of the algo-
rithm. The description of computational experiments presented in
the literature shows that the number of iterations of the algorithm
has a direct impact on the quality of designated solutions. Hence,
there is observed the search for methods accelerating the work
of a single iteration of the algorithm. One of them is the reduction
of the number of the neighborhood elements, their parallel gener-
ation and viewing. In case of tasks scheduling problems on multi-
ple machines with the minimization of time of tasks’ execution
(Cmax) there are ‘blocks eliminating properties’ (Grabowski &
Wodecki, 2004) successfully used. Similar properties are imple-
mented in the algorithm solving the problem of determining min-
imum cycle time, more specifically – a minimum time of a single
machine run. The properties enable elimination of elements from
the neighborhood that do not directly provide the improvement

158 W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163
of the best solution found so far. In the work (Bo _zejko et al., 2015)
there was a method to solve the CFS problem and tabu search
sequential algorithm presented. The further part of the chapter
outlines the main elements of the above mentioned method. For
a fixed permutation p 2 U and machine k 2 U

TkðpÞ ¼
Xn�1

i¼1
ðpk;pðiÞ þ skpðiÞ;pðiþ1ÞÞ þ pk;pðnÞ þ skpðnÞ;pð1Þ ð7Þ

is the time of tasks’ execution in the order p, with a setup time
between the task pðnÞ and pð1Þ (i.e. The last task in a given MPS
and the first in the next one). Thus, it can be easily proven that
the minimum cycle time is

T�ðpÞ ¼ minfTiðpÞ : i ¼ 1;2; . . . ;mg: ð8Þ
Ideas of the algorithm solving the problem of determining the

optimal cycle time (solution to CFS problem) can be summarized
as follows:

MinCyc algorithm
p – start permutation;
T� – the best solution found so far;
T� T�ðpÞ;
repeat
Step 1: Generate from p a New permutation b;
Step 2: Compute minimum cycle time T�ðbÞ;
if T�ðbÞ < T� then
T� T�ðbÞ;

until (end condition).

In Step 1 permutation b will be generated from the neighbor-
hood p. In Step 2, using (8) it is possible to compute minimum
cycle time T�ðbÞ. Let us assume that the maximum in (8) was
achieved for kth machine, i.e. T�ðbÞ ¼ TkðbÞ. Hence, the following
remark.

Remark 1 (Bo _zejko et al., 2015). The necessary condition for
reducing the minimum cycle time T�ðbÞ is shortening the work
time of kth machine, i.e. reducing of TkðbÞ.

Designating of minimum work time of kth machine, i.e. the
value minfTkðdÞ : d 2 Ug can be reduced to the following traveling
salesman problem. Let Hk ¼ ðV; E; p; sÞ be the full graph, where

� set of vertices: V ¼ J ,
� set of edges: E ¼ fðv;uÞ : v – u; v ;u 2 Vg,
� weights of vertices: pðvÞ ¼ pk;v ; v 2 V,
� weights of edges: sðeÞ ¼ ske ; e 2 E.
Remark 2 (Bo _zejko et al., 2015). The work time of kth machine
TkðpÞ equals to the length (i.e. the sum of weights of vertices and
edges) of Hamiltonian cycle ðpð1Þ;pð2Þ; . . . ;pðnÞ;pð1ÞÞ in graph Hk.
Remark 3 (Bo _zejko et al., 2015). Minimum work time of kth
machine equals to the length of the traveling salesman path in
graph Hk, i.e. minimum (due to the length) of Hamiltonian cycle.

Let p�k be optimum Hamiltonian cycle (traveling salesman
path) in graph HkðpÞ ðk ¼ 1;2; . . . ;mÞ. This is the optimal (i.e. min-
imal due to execution time) order of the tasks from the set J on
kth machine. Such permutation will be called pattern for kth
machine.

In order to reduce the work time of kth machine TkðpÞ one must
generate permutations from p taking into account the elements of
the pattern. The patterns also enable eliminating of the elements
from the neighborhood which do not improve the current value
of the cycle time T� (Step 2 of MinCyc algorithm).

4.1. Blocks of tasks

Let

B ¼ ðpðaÞ;pðaþ 1Þ; . . . ;pðbÞÞ; ð9Þ
be a sequence of occurring immediately one after another tasks of
the permutation p 2 U; p�k pattern for the kth machine and u; v
ðu– v; 1 6 u; v 6 nÞ pair of numbers such that:

W1: pðaÞ ¼ p�ðuÞ;pðaþ 1Þ ¼ p�ðuþ 1Þ; . . . ;pðb� 1Þ ¼ p�ðv � 1Þ;
pðbÞ ¼ p�ðvÞ, or

W2: pðbÞ ¼ p�ðuÞ; pðb� 1Þ ¼ p�ðuþ 1Þ; . . . ;pðaþ 1Þ ¼ p�ðv � 1Þ;
pðaÞ ¼ p�ðvÞ

W3: B is the maximum subsequence due to the inclusion, i.e. it is
not possible to enlarge it either by an element pða� 1Þ, or by
pðbþ 1Þ, fulfilling the constraints W1 or W2),

If the sequence of tasks (9) meets the conditions W1 and
W3 or W2 and W3, then it is called a block on kth machine
(k 2M).

A sequential algorithm determining all of the blocks in the per-
mutation is presented below.

SeqBlock algorithm
p ¼ ðpð1Þ;pð1Þ; . . . ;pðnÞÞ – permutation;
p� ¼ ðp�ð1Þ;p�ð1Þ; . . . ;p�ðnÞÞ – pattern of permutation p;
t – number of blocks;
ðb1; b2; . . . ; btÞ – vector of positions of initial blocks in p;
t 1; i 1;
while ði 6 nÞ do
begin

bt i; q ðp�Þ�1ðpðiÞÞ;
while ðpðiÞ ¼ p�ðiÞÞ do
begin
q qþ 1;
i iþ 1;

end;
i iþ 1;

end.

The computational complexity of the algorithm is OðnÞ.
Determination of the pattern (optimal traveling salesman path

in the graph Hk) is a NP-hard problem. Therefore, the use of
approximation algorithms, e.g. 2-opt is justified. For each machine
model the pattern should be determined once before running of
MinCyc algorithm.

In the further part of this chapter we will describe permutations
generated from p (Step 1 of MinCyc algorithm), where the cycle
time is not less than T�ðpÞ, therefore do not give the improvement
of the best current cycle time T�.

Theorem 1 (Bo _zejko et al., 2015). If permutation b was generated
from permutation p by swapping the order elements in certain
internal block on machine k 2 M, then TkðbÞP TkðpÞ.

Therefore, generation of the neighborhood of permutation p
(from which the best element is chosen – Step 1 of MinCyc algo-
rithm) will take place in two phases:

1. Designation of blocks in p.

Table 1
The speedup values for different numbers of processors – Intel Xeon Phi 3120A, part I.

ka p ¼ 2 p ¼ 4 p ¼ 6 p ¼ 8 p ¼ 10

1 0.003 0.001 0.001 0.001 0.001
2 0.008 0.003 0.003 0.003 0.003
5 0.018 0.008 0.008 0.007 0.007

10 0.037 0.016 0.017 0.017 0.015
20 0.078 0.033 0.036 0.043 0.033
50 0.308 0.154 0.165 0.143 0.147

100 0.632 0.441 0.458 0.443 0.400
200 0.961 0.915 0.986 1.047 0.980
500 1.229 1.578 1.889 2.061 2.171

1000 1.309 1.943 2.498 2.773 3.024
2000 1.302 2.255 2.994 3.490 3.810
5000 1.366 2.478 3.432 4.160 4.880

10,000 1.398 2.584 3.612 4.462 5.266

W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163 159
2. Swap before the first or the last element of the block a task that
exists on this position in a pattern. This will increase one of the
blocks.

5. Parallel determination of the blocks

In order to accelerate the algorithm for determining the mini-
mum cycle time we present a method of parallelization of the most
time-consuming, performed in each iteration, procedure for deter-
mining blocks.

Theorem 2. The designation of blocks for the cyclic flow shop
problem with setups can be done in OðlognÞ time on mn – processor
of CREW PRAM machine.
Proof. The design of the algorithm for block designation on n-
processor CREW PRAM machine will be presented, based on
methodology appearing in the monograph (Bo _zejko, 2010). Let
the number of processors be p ¼ n.

ParBlock algorithm
p ¼ ðpð1Þ;pð1Þ; . . . ;pðnÞÞ – permutation;
p� ¼ ðp�ð1Þ;p�ð1Þ; . . . ;p�ðnÞÞ – pattern of permutation p;
t – number of blocks;
ðb1; b2; . . . ; btÞ – vector of positions of initial blocks in p;
t 1; i 1;
Step 1: parfor r 2 f1;2; . . . ; pg do
pð0Þ pðnþ 1Þ p�ð0Þ p�ðnþ 1Þ �1;
ðp�Þ�1ð0Þ ðp�Þ�1ðnþ 1Þ �1;

if (previous position in p is identical as in p�, i.e.
pðr � 1Þ ¼ p�ððp�Þ�1ðpðrÞÞ � 1Þ) then
B½r� 1;
else

B½r� 0;
Step 2: Determine prefix sum of P elements from the table
B, i.e.

8r2f1;2;...;pgP½r� ¼
Xr

i¼1
B½i�:

Step 3: P½nþ 1� �1;
parfor r 2 f1;2; . . . ; pg do
if ððP½r þ 1� ¼ P½r�Þ and ðP½r � 1� < P½r�ÞÞ then

B½r� 1;
else

B½r� 0;
Step 4: parfor r 2 f1;2; . . . ; pg do
if (B½r� > 0) then
P0½r� 1;
else

P0½r� 0;
Step 5: Determine prefix sums of P0 elements from the table
and place them
again in table P0.
Step 6: b0 :¼ 0;
parfor r 2 f1;2; . . . ; pg do
if (B½r� > 0) then
begin
bP0 ½r� :¼ P½r�;
Synch_Barrier;
bP0 ½r� bP0 ½r� � bP0 ½r��1;
Synch_Barrier;
bP0 ½r� bP0 ½r� þ 1;

end.
The above presented algorithm enables the determination of
the blocks on exactly one machine. In order to designate blocks
on each m machine, the number of p ¼ mn processors is required.
It will not change the logarithmic time of calculations, because
they are independent of each other. h

Prefix sums of the sequence of p-elements (Step 2 of ParBlock
algorithm) can be determined on the CREW PRAMmachine in time
OðlogpÞ.

Proposition 1. The above presented method of determining the
blocks in time OðlognÞ can be implemented also on a smaller number

of processors, i.e. p ¼ O mn
logn

� �
.

The neighborhoods generated with the use of blocks deter-
mined parallelly were implemented in two canonical metaheuris-
tic algorithms. In the first, Tabu Search (TS, Bo _zejko et al., 2015),
the whole neighborhood is (deterministically) searched. In the sec-
ond, Simulated Annealing (SA, Bo _zejko et al., 2015), an element of
the neighborhood is determined randomly (in accordance with an
established probability distribution).

6. Computational experiments

Computational experiments were performed with two main
objectives:

1. Determination of speedup of parallel procedures of determining
blocks.

2. Examining of the impact of parallel calculating of blocks on
time and quality of solutions of the cyclic flow shop scheduling
problem.

6.1. Acceleration of parallel procedures for blocks determining

A parallel process for the blocks designation has been imple-
mented in C++ using OpenMP library. Data for computational
experiments (permutations of tasks) were generated randomly.
The number of permutations of elements changed in the range
from 103 to 107.

Computational experiments were carried out in three comput-
ing environments with shared memory:

1. CPU – multicore processor Intel Core i7 X-980 (3.38 GHz) pro-
cessor, enabling the use of 12 processors,

2. CPU – multicore Intel Xeon processor E5-2670 (2.30 GHz),
enabling the use of 48 processors,

3. MIC – coprocessor Xeon Phi 3120 (6 GB, 1.1 GHz), enabling the
use of 228 processors.

a The number of elements of permutation (tasks) is k ¼ n � 103.

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sp
ee

du
p

size

p=16
p=32
p=64

p=128

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

sp
ee

du
p

processors

n=10 • 103

n=100 • 103

n=1000 • 103

n=10000 • 103

Fig. 1. The dependence of the speedup on the number processors for different number of tasks in the permutation and for different numbers of processors – Intel Xeon Phi
3120A.

160 W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163
The obtained results in the form of acceleration of parallel pro-
cedure for designating the blocks were presented in Tables 1–4.
The first column indicates the number of elements of permutations
(tasks), whereas the following columns show speedup values for
different numbers of processors (threads) p. The symbol k is a coef-
ficient of expression denoting the number of elements in a permu-
tation, which is k � 103. The dependence of speedup of the number of
processors for different numbers of tasks in the permutation was
presented in the form of graphs (Figs. 1 and 2). In Fig. 1 there was
presented dependence of the speedup on the number of tasks in
the permutations for a co-processor Intel Xeon Phi 3120A.

The results of computational experiments for co-processor
Xeon Phi 3120A were presented in Tables 1 and 2 and in Fig. 1.
The obtained results show that for a different number of tasks in
permutation the speedup initially increases fairly rapidly, reaches
a maximum and then decreases slowly. The number of processors,
for which the maximum speedup is reached, depends on the size of
the problem. For example, for 5000 � 103 tasks in permutation the
maximum speedup is achieved for the number of p ¼ 32 proces-
sors, whereas for 10;000 � 103 tasks it is p ¼ 64 processors. Having
Table 2
The speedup values for different numbers of processors – Intel Xeon Phi 3120A,
part II.

ka p ¼ 16 p ¼ 32 p ¼ 64 p ¼ 128

1 0.001 0.001 0.001 0.001
2 0.003 0.002 0.002 0.001
5 0.007 0.006 0.006 0.004

10 0.015 0.013 0.012 0.008
20 0.033 0.029 0.023 0.019
50 0.129 0.129 0.100 0.073

100 0.400 0.347 0.261 0.195
200 0.988 0.884 0.697 0.507
500 2.234 2.222 1.799 1.285

1000 3.360 3.552 2.967 2.278
2000 4.679 5.307 4.961 3.853
5000 6.306 8.270 8.154 7.043

10,000 7.091 9.766 10.775 9.679

a The number of elements of permutation (tasks) is k ¼ n � 103.
in mind the notion of scalability of parallel algorithms it is possible
to state that for 5000 � 103 tasks in permutation the parallel
method for determining the blocks for p ¼ 1 . . .32 is characterized
with a strong scalability because with the growing number of pro-
cessors the speedup increases. However, for p ¼ 64 . . .128 the
method is characterized with weak scalability since in order to
obtain the increase of speed up, the size of the problem must be
increased. On the basis of carried out computational experiments
it is possible to state that the co-processor Intel Xeon Phi 3120A
is scalable because increasing the size of the problem leads to
greater speedup with a fixed number of processors (Fig. 1).

The results of computational experiments for Intel Core i7
X-980 processor are published in Table 4 and Fig. 2. Parallel
method of blocks determination blocks in this case behaves
similarly to the co-processor Intel Xeon Phi 3120A, however, the
smaller the number of processors does not allow us to fully observe
the scalability of hardware and the algorithm. It is worthmentioning
that the values of speedup for any number of processors for Intel Core
i7 X-980 is greater than 1 already for 10 � 103 tasks in permutations.
In contrast, for the co-processor Xeon Phi 3120A exceeding the
threshold of speedup s ¼ 1 occurs for 500 � 103 task in permutations.
Table 3
The speedup values for different numbers of processors – Intel Xeon E5-2670.

ka p ¼ 2 p ¼ 4 p ¼ 6 p ¼ 8 p ¼ 10 p ¼ 16 p ¼ 32

1 0.247 0.232 0.211 0.192 0.171 0.128 0.032
2 0.447 0.453 0.339 0.353 0.292 0.231 0.081
5 0.578 0.815 0.677 0.614 0.593 0.453 0.167

10 0.786 0.839 0.941 0.816 0.835 0.631 0.219
20 0.885 1.057 1.351 1.242 1.357 1.164 0.400
50 1.005 1.365 1.726 1.464 1.914 1.994 0.886

100 1.101 1.581 1.897 2.122 2.326 2.474 1.358
200 1.103 1.602 2.012 2.371 2.491 2.900 1.757
500 1.125 1.583 1.931 2.255 2.345 2.606 2.331

1000 1.102 1.604 2.015 2.312 2.429 2.913 2.330
2000 1.119 1.761 2.094 2.572 2.821 3.287 3.245
5000 1.185 2.015 2.666 3.340 3.409 4.092 5.228

10,000 1.192 2.121 2.833 3.384 3.724 4.672 5.281

a The number of elements of permutation (tasks) is k ¼ n � 103.

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4 5 6 7 8 9 10

sp
ee

du
p

processors

Intel Core i7 x-980

n=10 • 103

n=100 • 103

n=1000 • 103

n=10000 • 103

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35

sp
ee

du
p

processors

Intel Xeon E5-2670

n=10 • 103

n=100 • 103

n=1000 • 103

n=10000 • 103

Fig. 2. The dependence of the speedup on the number processors for different number of tasks in the permutation – Intel Core i7 x-980 and Intel Xeon E5-2670.

-31.5

W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163 161
6.2. Parallel metaheuristics

Parallel tabu search and simulated annealing algorithms for the
cyclic job shop problem with setups of machines were imple-
mented in C++ language using MPI library. In the implementation
process there was MPSS (Multiple Initial Point Single Strategy) used
according to Voß (1993) classification, in which processors start
calculations with different initial solutions using the same search
strategy. Computational experiments were performed on a server
Table 5
The mean relative improvement of PRD [%]. Tabu search algorithm.

n�m p ¼ 1 p ¼ 2 p ¼ 4

20� 5 �29.52 �33.24 �33.57
20� 10 �31.61 �31.89 �32.24
20� 20 �31.07 �31.01 �31.28
50� 5 �38.03 �38.18 �38.07
50� 10 �34.84 �34.82 �35.095
50� 20 �31.93 �32.04 �32.13
100� 5 �37.71 �37.86 �38.10
100� 10 �34.30 �34.43 �34.49
Average �33.51 �33.98 �34.14

Table 4
The speedup values for different numbers of processors – Intel Core i7 x-980.

ka p ¼ 2 p ¼ 4 p ¼ 6 p ¼ 8 p ¼ 10

1 0.495 0.214 0.214 0.199 0.217
2 0.551 0.667 0.520 0.453 0.587
5 0.981 1.188 0.615 1.253 0.890

10 1.401 1.549 1.133 1.765 1.737
20 1.243 1.709 1.952 2.144 2.399
50 1.142 2.045 2.407 1.854 2.575

100 1.119 1.483 1.347 2.214 1.262
200 1.349 2.090 2.614 2.118 2.486
500 1.382 2.126 1.907 2.181 2.510

1000 1.337 2.100 1.944 1.508 2.391
2000 1.267 2.207 2.746 2.544 3.058
5000 1.387 2.304 3.008 2.930 3.322

10,000 1.458 2.456 3.198 3.054 3.443

a The number of elements of permutation (tasks) is k ¼ n � 103.
operating under control of a 64-bit operating system Linux Ubuntu
12.04 equipped with Intel Core i7 CPU X980. The algorithms were
run for different numbers of threads p ¼ 1;2;4;6;8;10.

The calculations were performed on examples for the hybrid
flow-shop problem included in the work (Ruiz & Stützle, 2008).
Gathered data was divided into 25 groups. Each consists of
p ¼ 6 p ¼ 8 p ¼ 10 LB

�33.74 �33.77 �33.74 �45.67
�32.38 �32.52 �32.47 �43.77
�31.38 �31.52 �31.44 �44.62
�38.31 �38.44 �38.34 �48.92
�35.06 �35.14 �35.09 �48.01
�32.16 �32.28 �32.21 �46.32
�38.16 �38.19 �38.21 �49.27
�34.60 �34.74 �34.69 �48.01
�34.25 �34.33 �34.29 �46.82

-34.5

-34

-33.5

-33

-32.5

-32

 1 2 3 4 5 6 7 8 9 10

P
R

D
 [%

]

processors

pTS
pSA

Fig. 3. Dependence of PRD from the number of processors.

Table 6
The mean relative improvement of PRD [%]. Simulated annealing algorithm.

n�m p ¼ 1 p ¼ 2 p ¼ 4 p ¼ 6 p ¼ 8 p ¼ 10 LB

20� 5 �31.05 �30.92 �32.11 �32.16 �32.31 �32.82 �45.67
20� 10 �30.05 �29.83 �30.44 �30.72 �31.36 �31.20 �43.77
20� 20 �29.13 �29.50 �30.33 �30.36 �30.79 �30.60 �44.62
50� 5 �35.38 �35.27 �36.08 �36.23 �36.39 �36.45 �48.92
50� 10 �32.75 �33.00 �33.14 �33.50 �33.72 �33.78 �48.01
50� 20 �30.34 �30.86 �31.00 �31.28 �31.52 �31.50 �46.32
100� 5 �34.86 �34.93 �35.10 �35.30 �35.58 �35.63 �49.27
100� 10 �31.94 �31.61 �32.43 �32.78 �32.65 �32.95 �48.01
100� 20 �30.15 �30.31 �30.83 �30.86 �31.07 �31.17 �47.10
Average �31.70 �31.77 �32.35 �32.51 �32.76 �32.81 �46.85

162 W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163
examples of the same number of tasks and machines. Individual
groups differ from one another in the way of generation and/or
the number of machines or tasks.

Percentage relative deviation of solutions (abbreviated to PRD)
were determined as follows:

PRD ¼ Fref � Falg

Fref
� 100% ð10Þ

where Fref and Falg are, respectively, the values of the objective func-
tion, the reference solution (determined by NEH construction algo-
rithm Nawaz, Enscore, & Ham, 1983) and the solution determined
by the tested algorithm. As the element of algorithms accuracy
analysis, column LB shows the relative percentage deviation of
the NEH solutions (i.e. upper bounds) to the lower bounds deter-
mined by the literature 1-tree method (Lawler, Lenstra, Rinnoy
Kan, & Shmoys, 1985).

Parallel Tabu Search Algorithm. Differentiation of the initial solu-
tions was obtained by running a certain local search algorithm
with a small number of iterations 10r; r ¼ 1;2; . . . ; p, where p
denotes the number of processors. The tabu search algorithm
was run for a fixed number of iterations it ¼ 1000. As a final solu-
tion there was selected the best solution (in terms of objective
function value) out of the solutions determined by individual pro-
cessors. In Table 5 there were the average values of percentage rel-
ative deviation (PRD) presented in reference to the reference
solutions.

On the basis of the obtained results it is possible to state that
the parallel algorithm determines much better solutions. Fig. 3
shows the relationship between the PRD and the number of pro-
cessors. It is easy to notice that the PRD value decreases with an
increasing number of processors. In this way we get better and bet-
ter solutions.

Parallel Simulated Annealing Algorithm. The process of imple-
mentation of parallel simulated annealing algorithm can be
achieved in several ways. To solve the presented in the work prob-
lem there was a strategy used in which individual processors exe-
cute calculations independently.

Differentiation of the initial solutions was obtained by changing
the number of iterations in the process of determination of the ini-
tial temperature – rn2=4, where r ¼ 1;2; . . . ; p, and p the number of
processors. Simulated annealing algorithm was run for a fixed
number of iterations – it ¼ 1000. As a final solution there was
the best solution (in terms of the objective function value) chosen
out of the solutions determined by each of the processors. The
average percentage relative deviations (improved solutions deter-
mined by the NEH) are provided in Table 6.

On the basis of the obtained results it can be concluded that,
like in case of TS, the application of parallel simulated annealing
algorithm for the cyclic flow shop problem allows one to achieve
better results (in terms of objective function value) than for
sequential algorithm. The dependence of PRD on the number of
processors is shown in Fig. 3. The presented dependency shows
that increasing the number of processors allows for a reduction
in the value of the percentage relative deviation, i.e. bigger
improvement of the reference solution.
7. Conclusions

In the work there was parallel algorithm determining blocks for
cyclic flow shop problem demonstrated. The performed computa-
tional experiments showed a significant, even almost 10-fold
acceleration of the procedures for designating blocks. Next, the
TS and SA algorithms solving a cyclic flow shop problem with
machine setups were presented.

Parallel implementations of algorithms executed MPSS (Multi-
ple Initial Point Single Strategy) were proposed, in which the proces-
sors start operation from different starting solutions using the
same search strategy. The performed computational experiments
(for different numbers of processors) showed significant improve-
ment of reference solutions determined by NEH algorithm. Increas-
ing the number of processors directly improved the values of
determined solutions.

Block properties proposed here and applied the tabu search and
simulated annealing methods can be used in designing of any effi-
cient metaheuristic algorithms which uses neighborhoods. Addi-
tionally, parallel block determination can be used for the
neighborhood searching acceleration in local optima determina-
tion of such metaheuristics as memetic algorithms, scatter search,
etc.
References

Bo _zejko, W. (2010). A new class of parallel scheduling algorithms. Wrocław University
of Technology Publishing House. 1–280. <http://www.dbc.wroc.pl/publication/
11299>.

Bo _zejko, W., Gniewkowski, Ł., Pempera, J., & Wodecki, M. (2014). Cyclic hybrid flow-
shop scheduling problem with machine setups. Procedia Computer Science, 29,
2127–2136.

Bo _zejko, W., Pempera, J., & Wodecki, M. (2015). Parallel simulated annealing
algorithm for cyclic flexible job shop scheduling problem. In Lecture notes in
artificial intelligence no. 9120 (pp. 603–612). Springer.

Bo _zejko, W., Uchron_ski, M., & Wodecki, M. (2015). Block approach to the cyclic flow
shop scheduling. Computers & Industrial Engineering, 81, 158–166.

Bo _zejko, W., & Wodecki, M. (2007). On the theoretical properties of swap
multimoves. Operations Research Letters, 35(2), 227–231.

Brucker, P., Burke, E. K., & Groenemeyer, S. (2012). A branch and bound algorithm
for the cyclic job-shop problem with transportation. Computers & Operations
Research, 39(12), 3200–3214.

Gertsbakh, I., & Serafini, P. (1991). Periodic transportation schedules with flexible
departure times. European Journal of Operational Research, 50, 298–309.

Grabowski, J., & Wodecki, M. (2004). A very fast tabu search algorithm for the
permutation flow shop problem with makespan criterion. Computers &
Operations Research, 31, 1891–1909.

Kats, V., & Levner, E. (2010). A fast algorithm for a cyclic scheduling problem with
interval data. In Proceedings of the annual operations research society of Israel
(ORSIS-2010) conference, February 2010, Nir Etzion, Israel.

http://www.dbc.wroc.pl/publication/11299
http://www.dbc.wroc.pl/publication/11299
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0010
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0010
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0010
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0010
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0010
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0020
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0020
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0020
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0020
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0025
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0025
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0025
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0025
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0030
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0030
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0030
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0035
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0035
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0035
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0065
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0065
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0070
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0070
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0070

W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163 163
Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (1985). The traveling
salesman problem. Wiley-Interscience series in discrete mathematics and
optimization.New York: John Wiley & Sons.

Mendez, C. A., Cerda, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-of-
the-art review of optimization methods for short-term scheduling of batch
processes. Computers and Chemical Engineering, 30, 913–946.

Nawaz, M., Enscore, E. E., Jr, & Ham, I. (1983). A heuristic algorithm for the m–
machine, n–job flow–shop sequencing problem. OMEGA International Journal of
Management Science, 11, 91–95.

Pinedo, M. (2005). Planning and scheduling in manufacturing and services.New York:
Springer.
Pinedo, M. (2008). Scheduling: Theory, algorithms and systems.New York: Springer.
Pinto, T., Barbosa-Póvoa, A. P. F. D., & Novais, A. Q. (2005). Optimal design and

retrofit of batch plants with a periodic mode of operation. Computers and
Chemical Engineering, 29, 1293–1303.

Ruiz, R., & Stützle, T. (2008). An Iterated Greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives. European Journal of Operational Research, 187(3),
1143–1159.

Voß, S. (1993). Tabu search: Applications and prospects. In D. Z. Du & P. Pardalos
(Eds.), Network optimization problems (pp. 333–353). Singapore: World
Scientific Publishing Co.

http://refhub.elsevier.com/S0360-8352(16)30070-5/h0095
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0095
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0095
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0110
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0110
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0110
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0115
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0115
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0115
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0125
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0125
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0130
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0135
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0135
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0135
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0140
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0140
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0140
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0140
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0145
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0145
http://refhub.elsevier.com/S0360-8352(16)30070-5/h0145

	Parallel metaheuristics for the cyclic flow shop scheduling problem
	1 Introduction
	2 Problem description
	3 Mathematical model
	4 Solution method
	4.1 Blocks of tasks

	5 Parallel determination of the blocks
	6 Computational experiments
	6.1 Acceleration of parallel procedures for blocks determining
	6.2 Parallel metaheuristics

	7 Conclusions
	References

