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Abstract. Unmanned aerial vehicles (UAVs) are a powerful tool for
remote monitoring of objects requiring early anomaly detection, emer-
gency intervention, or measurement data collection. We consider the
problem of determining the optimal path of a UAV performing remote
inspection of objects. The UAV inspects objects repeatedly (infinitely
many times) every specified period of time. We propose an effective
heuristic algorithm based on the tabu search method. In its construc-
tion, we used some properties of the problem under consideration.

1 Introduction

COVID-19 pandemic in 2020 introduced many limitations in people worldwide’s
movement and work. The need for new technologies that allow performing people’s
labor without exposing them to the virus emerged. Many businesses switched to
remote work. However, there are still such branches of business, including security
and supervision of facilities (consisting of periodic inspections), which require a
human presence. Intelligent inspection systems may replace human in doing such
work. A popular and increasingly used solution used in inspection is the use of
unmanned aerial vehicles (UAVs). Due to the finite battery capacity and long
charging time, they require efficient path planning algorithms.

We should note that the battery charging station’s location can be virtually
any due to relatively low technical requirements. As a rule, only access to elec-
tricity (including solar energy) and a small inductive charging area are required.
For this reason, systems of this type can be installed in virtually any field con-
ditions. They can be installed permanently (e.g. inspection of forest facilities)
or ad hoc (e.g., an inspection of disasters). However, from the point of view of
designing inspection systems, we can determine the optimal route, including the
inspection object, and then adjust the charging station’s location to the route.

A particular case of the problem discussed in this paper is Close Enough
Traveling Salesman Problem (CETSP), currently the object of research by many
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scientists. CETSP differs from the problem under consideration in that there is
a fixed location (battery charging station) in the flight path at which each UAV
flight begins and ends.

CETSP was explored by Tekdas and Isler, 2009 [15]. They solved the problem
of collecting information from wireless sensor network by many mobile robots
(m-CETSP, m-Close Enough Traveling Salesman Problem).

Coutinho et al. 2016 [4] presented exact methods based on second order cone
programming (SOCP) and the Branch and Bound (B&B) method, Yang et al.
2018 [16] presented a hybrid algorithm based on the Particle Swarm Optimiza-
tion (PSO) and the Genetic Algorithm (GA). Mennell 2009 [11] and Mennell
et al. 2011 [10] proposed a heuristic based on the intersections of regions called
Steiner zones. Yuan et al. [17] created an efficient evolutionary algorithm that
was able to find the shortest path for all instances despite the long execution
time.

Some specific cases of the CETSP problem were solved with polynomial
approximation schemes by Arkin and Hassin 1993 [1], Mata and Mitchell 1995 [9]
and Dumitrescu and Mitchell 2003 [5], Carrabs et al. 2017 [3]. Behdani and
Smith, 2014 presented strong lower and upper boundaries for CETSP based on
mixed integer programming (MIP).

Behdani and Smith, 2014 [2] proposed an upper and a lower bound based on
the partitioning scheme of the TSPN problem. Taking advantage of the fact that
the optimal solution of the TSPN problem can be presented as a finite series of
points representing regions, a natural approach to obtain an acceptable path is to
approximate the solution space with a discrete set of points. This solution allows
obtaining an upper bound of the length of the optimal TSPN path. Behdani and
Smith’s approach is based on dividing a continuous solution space into smaller
sets and identifying those that may contain a point representing the optimal
TSPN path. The review [12] describes the most promising applications for aerial
drones and insights into modeling approaches.

1.1 Problem Description and Properties

A set of vertices is given V = {1, . . . , n} in a two-dimensional space with coor-
dinates (xi, yi), i ∈ V . Each vertex of i lies at the center of a region Ri which is
a circle of radius ri > 0. It is assumed that the drone reaching any point in the
area means that the object has been properly inspected and (xi, yi) �= (xj , yj),
∀i, j ∈ V , i �= j, i.e. no vertices are duplicated.

Solving the Cyclic Inspection Problem consists in determining the coordi-
nates of (xi, yi) and the circle σ = (σ1, . . . , σn), σi ∈ V , representing the order
in which the vertices are visited in such a way that the path passing through the
points (xi, yi) creates the Hamilton cycle of the shortest length.

For a given circle σ and coordinates X = [xi], Y = [yi] i ∈ V the length of
path can be determined from the expression 1.

L(σ,X, Y ) =
n−1∑

i=1

d(pσi
, pσi+1) + d(pσn

, pσ1), (1)
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where d(pi, pj) is the Euclidean distance between the points pi = (xi, yi) and
pj = (xj , yj).

Finally, we want to find circle σ∗ and coordinates X∗, Y ∗ such that
L(σ∗,X∗, Y ∗) is the smallest possible.

Theorem 1. Let Ra be an area completely contained within an area Rb then
the inspection point of area Ra will be a valid point in area Rb.

From property 1 we conclude that all areas that contain other areas can be
omitted. In this way, we decrease the number of points at which the objects will
be inspected.

Theorem 2. For each path that is a solution to an inspection problem, we can
always assign inspection points such that they all lie on the edges of the visibility
circles.

For proof, it suffices to note that any path to a point inside the circle of
visibility must first enter through some point on the periphery of that circle.

Using the property 2, the inspection point of the object i can be unam-
biguously described with the angle αi between the straight line parallel to the
OX axis and the straight line connecting the inspection object location and the
inspection point.

For the area Ri and the angle αi, the coordinates (xi, yi) of the inspection
point are given by the equations:

xi(αi) = Xi + ri cos(αi), (2)

yi(αi) = Yi + ri sin(αi). (3)

Finally, the path length for fixed sequence σ and α = (α1, . . . , αn) is

L(σ, α) =
n−1∑

i=1

d(pσi
(ασi

), pσi+1(ασi+1)) + d(pσn
(ασn

), pσ1(ασ1)), (4)

where pi(αi) = (xi(αi), yi(αi)).
Figure 1 shows the circles of visibility for the three objects, the angles that

determine the inspection points and the flight path of the UAV.
For a given circle σ function L(σ, α) is a real-valued function of a n number

of real-valued inputs. We can determine the values of arguments minimizing
L(σ, α) by several methods. In our opinion, the most effective algorithm to solve
such a problem is the one proposed by Potts [13]. Another reason for using
this algorithm is the widespread availability of software libraries containing the
implementation of this algorithm or algorithms based on it.
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Fig. 1. An example of inspecting three objects

2 Tabu Search Algorithm

In the previous section, we showed how we can effectively determine the UAV
flight path for a given sequence of inspection objects. In the current section,
we propose an algorithm for determining the sequence of inspection objects for
which the path with the shortest length exists. From among many combinatorial
optimization methods, we chose the tabu search method proposed by Fred Glover
[6–8]). The choice of this method was motivated by two facts: (i) algorithms based
on this method have experimentally proven high efficiency for many optimization
problems and (ii) in the tabu search algorithm, it is possible to effectively use
the results of the objective function calculations performed for one solution when
calculating the objective value for other solutions.

Let L(σ) denote the length of the shortest path determined by the algo-
rithm discussed in the previous section for the circle σ. In each iteration of the
algorithm, its neighborhood N (σ) is determined for the current solution σ. The
solutions of the neighborhood are generated by reordering some subsequence of
σ. The length of such sequences is relatively small so the neighbors are similar
to σ.

The neighborhood N (xi) is searched for finding the best solution σ′, which
becomes the current solution on the next iteration. Certain features of the last
movement performed are stored in the tabu list. Proper interpretation of these
features makes it impossible to return to solutions already considered.

When the best solution from the neighborhood is forbidden by the taboo list,
but the value of the objective function for this solution is better (lower) than
for the best solution found up to this moment during the searching process, we
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choose such solution as a new current solution for the next iteration. Of course,
the best solution found so far is being updated. The algorithm ends its execution
after a predetermined number of iterations.

The most popular neighborhood types used in local search algorithms for
routing problems are based on twist and 2-Opt types of move. The twist move
used in our algorithm is described by the (a, b) pair. The twist modification
described by the (a, b) pair consists in reversing the order of items into position
from a to b. For example, for σ = (1, 2, 3, 4, 5, 6, 7) and we obtain neighbor
(1, 2, 6, 5, 4, 3, 7) for twist (3,6). The tabu list remembered LT = 7 last twists,
which, as research has shown, effectively enables the return to the previous
solutions.

3 Computational Experiments

In order to evaluate the efficiency of the algorithm proposed in the previous
section (hereinafter abbreviated as TS) we designed and performed computa-
tional test. The solution generated by our algorithm was compared with solu-
tion generated by MIP-based algorithm (mixed integer programming) proposed
by Behdani and Smith [2]. The benchmark set contains 2 groups of instances
CETSP-6 and CETSP=12, each group contains 10 instances with the same num-
ber of inspection objects. The first set includes n = 7 inspection objects with
visibility circles with radius ri = 0.25, while the second set includes 13 objects
with visibility circles with radius ri = 0.5. Starting permutation was chosen as
natural one (1, 2, . . . , n).

The experiments were performed on a machine belonging to Wroc�law Centre
for Networking and Supercomputing with Intel Xeon E5-2670 v3 2.3GHz proces-
sor (24 physical cores), 64 GB of RAM, CentOS 6.10. Tabu search algorithm was
implemented in Python language (version of interpreter 3.7.4) (set size of tabu
list to 7,). Incorporated modified Powell’s method [13,14] from SciPy library
(SciPy version 1.5.2). For each instance and each algorithm A ∈ {MIP, TS}
were collected: L(A) – the length of path generated by algorithm A, and CPU
– running time (in seconds), and evaluated the percentage relative distance to
the best solution PRD(A) = L(A)−L∗

L∗ · 100 %, where L∗ = min{L(IA), L(TS)}.
Table 1 contains the results of running compared algorithms. From analyze

the quality of solutions generated by both algorithm one may conclude that
the TS algorithm found the best solution for all instances for the first group of
instances (see results marked in bold). The PRD value for MIP is in the range
1.9–4.9% for this group (average 2.5%). In practice, this means that thanks to
better planning of the UAV path, you can save nearly 2.5% of energy. In the
case of the second group of instances, the quality of solutions generated by both
algorithms is similar, with a slight advantage of the TS algorithm. The mean
PRD value of the TS algorithm is 0.66 while the MIP algorithm is 0.85. The
advantage of the TS algorithm over the MIP algorithm is also manifested in the
runtime. The TS algorithm generates better solutions in over 20 times shorter
time.
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Table 1. PRD and CPU time for MIP and TS algorithms

Instance MIP – Behdani and Smith TS

L(MIP ) PRD[%] CPU [s] L(TS) PRD[%] CPU [s]

ri = 0.25, n = 7

CETSP-6-1 34.2768 2.5 0.8 33.7750 0.0 0.04

CETSP-6-2 27.8568 2.3 0.8 27.5119 0.0 0.06

CETSP-6-3 25.6439 2.6 1.6 25.3383 0.0 0.05

CETSP-6-4 37.0838 1.9 0.5 36.7176 0.0 0.05

CETSP-6-5 22.9133 4.8 1.2 21.7241 0.0 0.07

CETSP-6-6 28.1387 3.4 0.8 27.5811 0.0 0.07

CETSP-6-7 35.0102 3.1 0.7 34.3591 0.0 0.05

CETSP-6-8 24.514 4.6 1.5 23.7608 0.0 0.05

CETSP-6-9 29.0243 4.3 0.8 28.1325 0.0 0.05

CETSP-6-10 34.9533 2.8 0.9 34.5152 0.0 0.05

Average 2.5 0.8 0.0 0.04

ri = 0.5, n = 13

CETSP-12-1 34.113 0.0 17.6 34.479 1.1 0.3

CETSP-12-2 45.235 0.0 4.3 45.796 1.2 0.3

CETSP-12-3 33.204 0.0 6.8 33.721 1.6 0.3

CETSP-12-4 33.253 0.2 16.5 33.196 0.0 0.3

CETSP-12-5 38.077 0.0 10.4 38.991 2.4 0.2

CETSP-12-6 36.163 1.0 2.9 35.813 0.0 0.2

CETSP-12-7 35.092 2.8 3.5 34.152 0.0 0.2

CETSP-12-8 38.410 0.0 3.4 38.509 0.3 0.2

CETSP-12-9 32.572 3.0 11.1 31.632 0.0 0.4

CETSP-12-10 40.716 1.5 4.4 40.122 0.0 0.2

Average 0.85 8.09 0.66 0.26

4 Conclusion

We designed the new approach for solving the discrete-continues problem of
cyclic inspection. Thanks to our original fast path planning method for UAVs
and use of TS algorithm, we can find comparable or even better solutions than
solutions generated by algorithms known from literature in much shorter time.
The further stage of research on the proposed hybrid approach is to examine
the impact of the methods of formulating a low-level continuous optimization
problem on the computation time. In the next steps, it would also be necessary to
prove the properties of the objective function for a given permutation (whether
it is a convex optimization, examine the number of extremes, whether there are
many global optimas, etc.).
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