Chapter 6

Using Graphs for Modeling and Solving Sthas
Cyclic Flow Shop with Waiting Time
Constraints

Czeslaw Smutnicki® and Wojciech Bozejko

Abstract The chapter deals with the permutation flow-shop scheduling problem
with time couplings in the form of an upper/lower bound on waiting-time between
operations in the job and the minimal cycle time criterion. We propose certain decom-
position of the problem leading to two particular sub-problems, namely “to find the
minimal cycle time for a fixed job processing order” and “to find the best job pro-
cessing order”. A variety of graphs have been used to solve the former sub-case
in the sequential and parallel computing environments. For the latter sub-case we
recommend a meta-heuristic with some special properties derived from these graphs.

Keywords Scheduling - Cyclic flow-shop - Waiting times - Graphs - Algorithm -
Time couplings

6.1 Introduction

A deterministic scheduling theory is frequently used for modeling and optimization
of workflow in production systems with robots, see for example review in Dolgui
et al. [9]. These models perform well for human-less systems, since robots usu-
ally works in almost deterministic way. The existing taxonomy of problems in the
scheduling field is set to cover, as this is possible, practical instances and takes into
account, among others, architecture of production/service units, classes of the sched-
ules, additional constraints and optimization criteria. The goal of this classification
is to fit for each practical case to the appropriate model and to recommend a pow-
erful solution method, see for example Bocewicz et al. [1, 2]. Among the schedule
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classes appeared in the scheduling theory, we use only two of them in this chapter:
(1) non-delay schedule, which means the single execution of the job set, see e.g.
definition in Pinedo [21] and (2) cyclic schedule, which means repeatable execution
of the job set, see e.g. Brucker and Kampmeyer [5, 6]. The former one is treated
as auxiliary for the latter. The permutation flow-shop scheduling problem appears
in the literature quite frequently, see for example the survey in Ruiz and Maroto
[23]. A few real implementations were presented till now in the literature, e.g. in the
chemical industry, Rajendran [22], food industry, Hall and Sriskandarajah [15] and
construction automation, Grabowski and Pempera [12].

We consider the cyclic flow-shop scheduling problem in which an assortment of
products (a certain fixed mixture of products) is delivered to the output by repeating
identical, but mixed in the composition production series, each of which called a
Minimal Part Set (MPS). The problem has also included “limited waiting time”
constraints between successive operations of a job, which is a generalization of the
case known in the literature as “no-wait flow-shop”. Both mentioned technologies
are used to eliminate or reduce the queue before a stage. Gilmore and Gomory [11]
analysed a non-delay schedule for the flow-shop problem with “no-wait” constraints
for two machines. This result can be easily extended to cyclic schedule in case of
two machines. For more than two machines, problem has a relation to the Traveling
Salesman Problem (T'SP), thus algorithms for asymmetric TSP can be recommended.
Other variants of the flow-shop with “no-wait” constraints have been considered in
Grabowski and Pempera [14]. We also refer to algorithms dedicated to flow-shop
[16] and hybrid flow-shop [8, 24, 28].

The remainder of the chapter is as follows. Section 6.2 gives a mathematical model
with reference to a linear programming task to find the minimum cycle time for a
given job processing order. Alternative solutions algorithms with the use of graphs
are presented in the Sect. 6.3. Section 6.4 describes methods of parallel determination
of the minimum cycle time (Table 6.1).

6.2 Mathematical Model

The conventional flow-shop scheduling problem refers to the machine park consist-
ing of m service stages defined by the set M = {1, ..., m}, which are used to perform
n jobs from the set N = {1, 2, ..., n}. Each job flows through machines 1,2, ..., m
in the identical technological order, however the order of loading the jobs into the
manufacturing system is changeable. In the paper we consider two cases: (a) n jobs
are loaded to the system once, in some order, providing so called non-delay schedule
considered next in the context of regular scheduling criteria; (b) n jobs are performed
in the repetitive way, duplicating the loading processing order repeatedly, providing
so called cyclic schedule, which is actually an irregular scheduling criteria. Process-
ing time of a job j € N on machine i € M is called an operation (i, j) and has the
duration p; ; > 0. Time event constraint means that the time of waiting between pro-
cessing of successive operation of a job has pre-defined lower (a; ;) and upper (b; ;)



6 Using Graphs for Modeling and Solving ... 107

Table 6.1 List of symbols

data

meaning
M={1,2,...,m} set of machines
N ={1,2,...,n} set of jobs
O=MXxN set of operations
Dij processing time of operation (i, )
aij lower bound on waiting time (4, j) — (i + 1, 7)
bij upper bound on waiting time (7, j) — (i + 1, j)
variables meaning
m=(m(1),..,7(n)) processing order; permutation on N
S = [Sijlmxn schedule (matrix)
T cycle time
criteria meaning
Crnax () makespan for processing order 7
T(m) minimal cycle time for processing order 7
auxiliary meaning
r=1,2,... index of cycles (MPSes)
1,J machine index; job index
(i,7) € O operation ¢ of job j
o=m-n number of operations
G(r) planar graph for 7
H(m) wrapped-around-cylinder graph for 7
G*(m) chain of m + 1 graphs G()
™ operation (pair) in cycle z in G*(7)
Uzﬂc,]y = (Uo, ,Uv) path ¢* — 3¥
L(i*, 3Y) path length
Ba:b block
Boiib-1 internal block

bounds. Processing jobs on the machines cannot be suspended. Each machine can
process at most one job at a time, and each job can be processed on only one machine

at a time.

Jobs enter the system in the order established by a permutation w = (7 (1),
..., m(n)) on the set N, which will be called next the “loading sequence” on the
system entry. Each 7 implies the schedule S = [S; j],,x, (defined as starting times
of all operations). Considering case (a) we refer to the most popular criterion called

the makespan written as
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Crnax (7)) = max max (S;; + pi ;). (6.1)

1<ism 1<j<n

Note that values of other regular criteria can be calculated from a non-delay schedule
S. For the case (b) we refer to the minimal cycle time 7 (7), which is calculated in
more complex manner, described in the sequel. The overall aim is to find permutation
7r* with minimal criterion value

K(x") = minK (). 6.2)

where IT is the set of permutations and K () is either Cy () or T(xr). Let us
consider the problem of finding S in cases (a) and (b) for the given 7 in detail.

The manufacturing system repeats processing of jobs from N in the form of
successive MPSes indexed by x = 1, 2, . ... Case (a) corresponds to x = 1, case (b)
to infinite sequence x = 1, 2, . ... We assume in case (b) that the job processing order
7 in each cycle remains the same. The schedule in successive cycles is periodical
so can be obtained by shifting on the time axis the schedule S by a certain number
of periods T. For the given 7, the minimal period of time, for which technological
and sequential constraints inside the cycle and between cycles have been satisfied is
T (). We are looking in case (b) for the synchronous periodical schedule with the

property
S=8j+«=DT, i=1,....m j=1,....n, x=1,.... (6.3)

where S7; is the start time of job j € N on'machine i inxthcycleand 7" > T'(). From
(6.3) it is enough to set single start time S, since all the remain $* forx = 1,2, 3, ...
follow immediately from this S. Hence, we define cyclic schedule § as this satisfying
the following constraints

Si;j=0, i=1,....m j=1,...n, (6.4)
Sin) = SimGot) + Pimty i=1,....m, j=2,....n, (6.5)
aij <Siy1j— Sij+pij) <bij, i=2,....m, j=1,...,n, (6.6)
Sizem +Pizey <Sizy+T i=1,....m 6.7)

Constraint (6.4) forces the schedule to be on the positive part of the time axis. Con-
straint (6.5) means that starting of successive operation on a machine is possible
upon completion of the preceding operation on this machine. The last constraint
fixes bounds on the waiting time expected between successive technological opera-
tions. Notice, assuming a; ; = 0 = b; ; we get the well-known flow-shop scheduling
problem with “no-wait” constraints. Value ¢; ; can be also perceived as the transport
time between successive operations of a job. Minimal cycle time 7 () for fixed job
processing order 7 can be found using a few methods. We discuss them in detail. The
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first approach follows immediately from the linear programming (LP) task, namely

T(r) = mSin T (6.8)

under constraints (6.4) — (6.7). The task has mn 4+ 1 non-negative variables and
2mn — n constraints. Although this task is a polynomial-time method, it seems to
be numerically too expensive, since usually it is called repeatedly. Among other
approaches, which can be adopted to find the cyclic schedule, we have found: mixed
integer linear programming, [6]; network flows, [18]; cycles in graphs, [17]. Each of
these technologies provides a non-polynomial algorithm to find 7'(;r), has various
running time and requires specific modelling fashion. In this chapter we provide a
few polynomial-time methods to find 7'(;r), based on specific graphs defined for the
problem, see [20] for other implementations of this idea.

6.3 Graph Models

In this section we will introduce three various graphs (networks of operations) applied
further to the formulation of special properties of the problem. These graphs refer to
a few common notions defined in the sequel. Each graph is defined as the operational
network presented in the AoN (Activity-on-Node) style. Node (i,j) € O =M x N
in the graph corresponds to the operation of job j € N performed on machinei € M.
The node (i, j) has weight p;; and has assigned label S;; which means the event
“start time of the operation (7, j)”. Any constraint between time events S; ; and Sy ;,
for some (i, j) and (k, [), written generally as

Sij+pij+ cCijra < Ski (6.9)
is represented by the arc (i, /) — (k, /) with the weight ¢; j s ;.
In order to build suitable graphs, we need to assign inequalities (6.4)—(6.7) to
particular arcs in the network. Actually, inequality (6.5) re-written in the form of
Sizi—t) T Pixi—t) <Sizy, i=1,....m, j=2,...,n (6.10)
can be expressed by the arc

G, nG—1) — G nG) (6.11)

with the weight ¢; (j—1),i = = 0. Equation (6.6) can be transformed into two inde-
pendent inequalities (6.12) and (6.13), namely

Si+1,j_Si,j_Pi,j za,-h,-, i=2,...,m, j= 1,...,}’[, (612)
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Si+l,j_Si,j_pi,j Ebi,js i=2,...,m, ]= 1,...,}1, (613)

To identify arcs following from (6.12) and (6.13) we have to convert them to the
form of (6.9). After a few simple mathematical transformations of (6.12) we have

S,-n,-—l—p,-n,-—i—a,-n,- SSi-Q—l,js i=2,...,m, ]= 1,...,n, (614)

which corresponds to the arc
(i,j)) > (+ 1)) (6.15)

with the weight ¢; j ;11 ; = a; ;. Next, from (6.13) we obtain

Siv1j T Piv1j+ (=pij —pix1j—bij)) < Sij, i=2,....m, j=1,...,n,

(6.16)
which corresponds to the arc
G+ 1)—GJH (6.17)
with the weight ¢;41j;; = —pi; — pi+1; — bij. Inequality (6.7) converted to
Si.n(n) + Pixm) — T < Sl‘yﬂ(l), i=1,...,m. (6.18)
generates the arc
(i, w(n)) — (i, (1)) (6.19)

with the Weight Cin(n),i,m(1) = —T.

6.3.1 Non-delay Schedule

This planar graph is recommended for processing single job set N, see Fig. 6.5 (left)
for the given job processing order x. It allows us to find a non-delay schedule S
satisfying constraints (6.4)—(6.6), but not (6.7). It is suitable for finding the makespan
Chax (r) or other regular criterion value for the given processing order . The graph
has the form

G(m) = (0, E(m)), (6.20)

where O = M x N is the set of nodes and E(;r) C O x O is the set of arcs
E(r) =PURUQ(m). (6.21)

Arcs from P refer to inequality (6.14), have the form of (6.15), represent “techno-
logical” constraints associated with lower bounds on “waiting-time”
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m—1 n

P=JUJtG.p. G+ 1)} (6.22)

i=1 j=1

The arc ((i, j), (i + 1, j)) € P has weight g; ;. Arcs from R refer to inequality (6.16),
have the form of (6.17), can be also considered as “technological” and express upper
bounds on “waiting-time”

m—1 n

R=J G+ 1., @) (6.23)

i=1 j=1

The arc (i + 1, ), (i, j)) € R has weight —p; ; — p;y1,; — b; j. Arcs from Q () refer
to inequality (6.10), have the form of (6.11), express “processing order” constraints
and have the weight zero,

m n—1

o) = Ut =G = 1), 6. =G} (6.24)

i=1 j=1

We call schedule S feasible for this 7 if labels S;; assigned to nodes (i,j) €
O satisfy appropriate constraints for all ((i,j), (k, 1)) € E(x). Note that although
G () has graph cycles however it does not contain cycles of the length greater than
zero. This means that the feasible S always exists. To find S we use the labeling
algorithm, called next LA, applied previously in the paper [25] for a directed graph
with graph cycles, see Fig. 6.1. LA checks for each arc ((i, j), (k,[)) € E(x) whether
the inequality Sx; > S;; + pij + ¢ijx, 1s satisfied.

If the answer is “not satisfied”, LA adjusts Sy ; to fulfil the constraint. Variable
tag is used to detect the early end of the adjustment process. LA can be perceived as

Parameter: m
for (i,j) €O do S;; =0;
for v=1 to m-n—1 do
tag = 0;
for ((4,5), (k1)) € E(w) do
if Sy < Sij+pij+cijrg then
{ Ska=8ij+pij+cijr; tag=1; }
end if;
end for ((4,7),(k,1));
if not tag then return;
end for w;

Fig. 6.1 Algorithm LA
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Parameter: ™
k=mn(1);S1,5=0;
for i=1,...,m—1 do Siy1k =Sk +Pik + Aiki
for j=2...,n do
k=mn(j); l=n(j—1); Sie =51, +p1i;
for 1=2,...,m do
Sik = max{S;; + pi1, Si—1,k + Dic1,k + Gim1k}
end for 1;
for ¢=m,...,2 do
Si—1,kx = max{S;_1 %, Si.k — Pi—1,k — bi—1,x}
end for 1;
end for j;

Fig. 6.2 Algorithm LA™

a far analogy to the well-known Bellman-Ford algorithm dedicated for the shortest
paths from the single source.

Property 1 For the given w algorithm LA provides non-delay schedule S in the time
Q(@m - n) and O(m* - n?).

Apart LA, we propose more advanced labelling algorithm LA™ with com-
putational complexity considerably smaller than LA. Observe that G(x) can be
decomposed into a sequence of “strips” unscrambled along job processing order 7,
see Fig.6.5 (left). Strip 7 (i) has sequential predecessors in strips 7 (1), 7 (2), ...,
(i — 1) and technological predecessors only inside strip 7 (i). This allows us to
calculate S strip-by-strip, down-and-up, according to the constraints (6.10), (6.14),
(6.16), see the pseudo-code of LA™ in Fig. 6.2. Indeed, the first operation of the job
k = 7 (j), has no technological predecessors, so the substitution S; x = S1; + p1.
is clear. Next, formula S; ; = max{S;; + pis, Si—1.x + Pi—1.x + ai—1 x} in the former
loop for i = 2,...,m ensures (6.10), (6.14) but not necessarily (6.16). Checking
(6.16) and adjusting S;_, x is performed in the later loop for i = m, ..., 2. It can be
verified that LA™ ensures the feasibility of (6.10), (6.16), (6.14).

Property 2 For the given w algorithm LA™ provides non-delay schedule S in the
time ®(m - n).

Besides the theoretical analysis of the computational complexity, one expects
also experimental comparisons between LA and LA*. Using 80 flow-shop instances
with m - n < 1,000 from the benchmark set of [27] we find that the ratio of the
running time of LA to the running time of LA™ is on average 0.6...0.7 - m - n. It
means, among others, that already for medium size instances n = 50, m = 10, LA*
is approximately 300 times faster than LA. It also means that the complexity of LA
is closer to O(m? - n?) than to 2 (m - n).

Properties 1 and 2 allow us to find efficiently the goal function value for 7 for the
majority of regular scheduling criteria, for example the makespan, mean flow time.
Prospective benefits for the minimal cycle time criterion derive from the following
property, the proof is obvious.

Property 3 T(mw) < Cpax (1), where Ciax (1) is the makespan found for G ().
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6.3.2 Cyclic Schedule

We introduce graph H (7r) to find the cyclic schedule S (for the given w and T)
satisfying constraints (6.4)—(6.7) converted to the equivalent form (6.10), (6.14),
(6.16), (6.18), if only such schedule exists. It vicariously provides an alternative
method of finding 7T (;r), presented at the end of this subsection. The graph has the
form of

H(m) = (0,E(m)UF(m)), (6.25)

where O and E(mr) have been already defined for G(ir) (graph G () fulfills con-
straints (6.10), (6.14), (6.16)), whereas set of arcs

F(r) = G, mmy), G, 7w (1)), (6.26)

i=1

represents constraint (6.18). Each arc has the form (6.19) and the negative weight
—T. H() is a non-planar graph, can be drawn as an extension of G(x) wrapped
around a cylinder, see Fig. 6.5 (right), and can be perceived as a graph with unknown
value of the parameter 7. The best way is to set T = T'(;r), but actually we do not
know T (7). Let us assign labels S; ; to nodes in H (77 ) interpreted as the start time of
an operation (i, j) € O, and discuss the relation between T and S.

From (6.8) it follows that 7'(;r) is the minimal value of T for which the feasible
schedule S under constraints (6.4) — (6.7) still exists. It means that: (a) if T > T (i)
then the feasible S can be found, (b) if 7 < T'(7r) no feasible S exists. Concerning
the graph in case (b) we conclude that H (;r) contains a graph cycle with the length
greater then zero because of too small value of 7.

Considering the broader context of using graphs, H (;) has at least two possible
applications. The former is obvious and consists in finding the schedule S for T =
T (7r) with known in advance T (7). This needs a single run of, for example LA,
applied to H (r) and this 7. The latter is to find 7' (;r) through the identification of
the border value between regions of feasible and unfeasible S. This needs multiple
runs of a modified LA for variable values of 7. We present hereafter more details
about the latter idea, including an extension of LA.

At first, we have equipped LA with graph cycle detector used in case (b), see
extended version of LA+E in Fig. 6.3. After the “end for v”” loop LA+E checks addi-
tionally whether labels S have been set in the feasible manner. If not, ERR indicates
the lack of feasibility. Based on LA+E we have designed the following bi-partition
method. Let us assume that the minimal cycle time 7'(;r) is located in an interval,
it means T () € [T, T*], where T, is a lower bound, T* is an upper bound of the
interval. One expects that S found for T* is feasible, but for T, is unfeasible. Next
we run LA+E for trial value T = (T, + T*)/2. If for this T algorithm LA+E returns
ERR then T'() € [T, T*]; otherwise, if returns OK then T'(w) € [Ty, T]. The par-
tition is repeated until a stopping criteria will be met, for example 7* — T, <€,
for certain small value €. From the formulation of LP task it follows that the num-
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Parameter:
for (’L,]) €0 do Si,"j =0;
for v=1 to m-n—1 do
tag = 0;
for (((4,5),(k,1)) € E(r)UF(r)) do
if Spy < Sz',j + pi,j + Cij k1 then
{ Sky=Sij+pij+cijr; tag=1; }
end if;
end for ((4,7),(k,0));
if not tag then return OK;
end for wv;
for ((i,7),(k,1)) € E(r) UF(7) do
if Sy < Sz},j + pij + Cijky then return ERR;
return OK;

Fig. 6.3 Algorithm LA+E

ber of LA+E calls in the bi-partition method until stop is unknown since 7 ()
does not need to be integer. Notice, if ERR occurs, then the computational com-
plexity of single run of LA+E is © (m? - n?), otherwise is O(m? - n*) and Q (m - n).
Therefore, finding 7' (7) by a bi-partition method has the computational complexity
On? - m? - s), where s is the number of LA+E calls. Therefore, the bi-partition
method with LA+E provides the algorithm of finding 7'(7) with the pseudo-
polynomial computational complexity. The method although theoretically interest-
ing, might not be computationally attractive comparing to those presented in the next
subsection.

One can ask whether algorithm LA™ significantly faster than LA in the non-delay
scheduling case has the similar dominance also for H (7). The improvement from
LA+E to LA'+E remains true, however the potential profits are lesser comparing to
LA+E because of the structure of paths in H (7). Indeed, a graph cycle in H (;r) can
go around the cylinder at most m times, which means that analyse of strips has to be
repeated m times. The appropriate pseudo-code of LAT+E is shown in Fig.6.4. To
check feasibility in LAT+E we use the symbol V < E, where V is a variable and E
is an expression: if V = E than do nothing, otherwise if V < E than set V = E and
tag = 1.

The computational complexity of single run of LAT+E is Q (m - n) and O(m? - n).
To complete considerations of this subsection we provide the method of setting initial
values T, and T for the bi-partition method. From Property 3 we obtain immediately
T* = Cpax (77). On the other hand, from (6.7) we have fori =1,...,m

T > Sizm + Pizm — Siz) = diz),inm (6.27)
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Parameter:
for i=1...m do for j=1...n do S;; =0;

for v=1,...,m do
tag = 0;
k=n(1); l=m(n); Sik < max{Sik,S11+p1;s—T};
for i=2,...,m do

Sik < max{S; x, i1k + Pi—1,k + CGi—1,6, Siy +pig — T}
end for i;
for i=m,...,2 do
Si—1k — max{Si_1x,Sik — Pi—1.k — Dic1,k}
end for i;
for j=2,...,n do
E=m(j); l=m(j —1); S1r < max{Six,S1; +p1,};
for ¢=2,...,m do
Sik < max{S; r, Siy + Pi. Si—1k +Pi—1,6 + Gi—1k}
end for i;
for ¢=m,...,2 do
Si—1k — max{Si 1k, Sip — Pi—1,k — bi—1 1}
end for i;
end for j;
if not tag then return OK;
end for wv;
if tag then return ERR;
return OK;

Fig. 6.4 Algorithm LAT+E

where d; 7(1),i zm) 1 the length of the longest path between start of node (i, (1))
and end of node (i, 7w (n)) in H (7). This finding allow us to set

T, = llga<§ndi.n<1),i,n(n>- (6.28)
Appropriate algorithm of finding d; »(1),ixm), I = 1,..., m, can be obtained by a
slight modification of LA to run m times from the graph sources (i, (1)), i =
1,2, ..., m. It has the computational complexity O(m? - n). Notice, in a general case

(6.28) is not a tight bound (Fig. 6.5).

6.3.3 Chain of Graphs

T(m) can be calculated precisely by using so-called chain graph G*(ir). Briefly
speaking, G*(r) is the concatenation of m + 1 identical graphs G (r), see Fig. 6.6,
torepresent the sequence of m 4 1 successive cyclesindexedbyx = 1,2, ..., m+ 1.
The concatenation has been made with the help of additional arcs going from each
last operation on a machine in some cycle to the first operation on this machine
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n=(4, 2, 3, 1)
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Fig. 6.5 Tllustrative graph G(rr) for LA and strips used in LA* (left). Wrap-around-cylinder graph
H () for this instance (right)
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Fig. 6.6 Chain graph for the instance

in the next cycle. We will provide hereafter a more precise and formal descrip-
tion. In order to avoid too excessive mathematics, in this subsection we denote
by single index j the operation j € O (actually, j is the pair). The graph has the
form

G*(m) = (0", E*(m) U W*(7r)), (6.29)
with a set of nodes
m—+1
or=Jo". o'=y*:jeoy (6.30)
x=1

where O* is the xth copy of the set O; we denote by j* the operation j in the xth cycle.
Likewise, we define the extended set of arcs

m+1

E'(m) = JE'(m), E*(r) ={G%)") : (i.)) € E(T)), (6.31)

x=1

where E* (i) is the xth copy of E(sr). To link copies of graphs we define additional
arcs with no weights
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W*(m) = U Wi (), W) = {((L, ()", (I, (1)) leM}). (6.32)

x=1

G*(m) can be perceived as an extension of G(ir), so we will introduce also the
extended schedule vector S, j € O*.

Any path from i* to /¥, x < y,in G*(7),y < m + 1 can be described by a sequence
of nodes from O* occurring in this path

Ui jp = (ug, uy, ..., uy), (6.33)

where up = i*, u, = j7. Since there may exist many alternative paths from i* to j”,
then we denote by L(i*, /) the length of the longest one among all paths from i* to
J7, formally

v—1

LG*, ) = max ;@m + Cua): (6.34)

where ¢, ,,,, is the weight of the arc #; — u,1 and maximization runs over all paths
U defined by (6.33). We supplement this definition setting L(i*, j*) = oo if path U
does not exist. L(i*, j*) depends on &, however for the convenience sake of notation
we do not express this fact directly. Values L(i*, ), i*, j* € O* can be found either
by LA or LA* with respect to G* (7).

Property 4 The calculation of L(i*, j*) for any i*,j> € O* in G*(7), can be done
by LA in the time O(m®n?) and by LA™ in the time O(m*n?).

Graph G*(r) has ®(m?n) nodes and ©(m?n) of arcs, see (6.30)—(6.32). For
each source node i* € O* we can run either LA or LA™ to obtain paths from this
i* to all j* € O*. Whence, the final computational complexity for LA is O(m?n) -
O((m?)*n?) = O(m°n?), whereas for LA™ is O(m’n) - O(m*n) = O(m*n?).

Considering relations between time events in the extended schedule S found on
the base on G (;r), we conclude that

Sp — Sp = LG, ). (6.35)

Inequality (6.35) has an immediate application as follows.

Property S We have

T(m) = k:?%ﬂ z=nllaxm k—1"~ (6.36)

where at = ((1, w(1)*.

Now, we are ready to formulate the algorithm of finding 7 (;7).
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Property 6 T(mw) can be calculated from (6.36) by using graph G*(7) and LA in
the time O(m’n?) and by using LA™ in the time o(mn).

The properties imply various optimization strategies: (A-1) use Cp,x(7r) instead
of T'(7r) in order to evaluate the upper bound on a time window for cyclical schedule
S (see Property 3), (A-2) find 7# by using an approximate method A with Cpax (77)
criterion, then calculate T'(w4) once (see Property 3), (A-3) find A by using an
approximate method A with 7 (i) criterion (see Property 6).

It is clear, comparing Property 6 with Property 3, that variants (A-1) and (A-2)
are faster than (A-3). The question “whether these algorithms remain competitive in
terms of quality” will be verified next in computer tests.

6.3.4 Block Properties

The path in any graph we describe by a sequence of nodes, see (6.33). Path length
is defined as the sum of node weights plus the arcs weights, see (6.34). The path
U™ = (wg, ..., w,) for which right-hand-side of (6.36) reaches the maximal value
we call the extended critical path (ECP). U™ can be naturally decomposed into
sub-sequences of operations having specific features: “pass through machine” and
“pass through the job”. Operations passing through the machine can be intermixed
(more precisely jobs having these operations can be altered), while operations passing
through the job cannot be intermixed due to belonging to the same job. Then, only the
former type of sub-sequence can be considered in the context of possible improving
T (7). The maximal sub-sequence of the critical path containing nodes corresponding
to successive operations processed on the same machine is called the block and is
denoted by B,.p,a < b,a, b € {0, ..., v}. Ineach block we distinguish the first a and
the last b operation of the block; the remaining operations B, .,—; constitute the
internal block. Although notions block and internal blocks have appeared in many our
earlier papers, see for example [13, 19], for the considered problem these notions are
unusual. They have completely different meaning since ECP corresponds to several
laps around the cylinder, but still behaves analogous elimination properties.

Property 7 Let o be the new processing order of jobs obtained from m by altering
Jjobs corresponding to operations processed on certain machine. If T (o) < T (1),
then at least one operation from at least one internal machine block is processed
before the first or processed after the last operation of this block. Processing of jobs
are adjusted accordingly.

Property 7 is a nontrivial extension of the so-called block property from our earlier
papers, [13, 19], which has become the flagship approach of our research team.
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6.4 Parallel Methods

Two methods of parallel determination of the minimum cycle time for the determined
order of operations  will be presented below, differing in their operation time and
the required number of processors.

6.4.1 Parallel Determination of the Longest Paths in the
Graph

Later in the work it will be required to quickly determine the longest paths in the
graph between all pairs of vertices. Typically, a variant of the Warshall-Floyd algo-
rithm with the longest paths (the shortest in the original being determined) is used
sequentially, see Cormen et al. [7] for detail. However, when running the algorithms
in a multiprocessor environment, it is preferable to parallelize the less efficient algo-
rithm sequentially, called the longest path algorithm based on the Cormen et al. [7]
matrix multiplication idea. This algorithm has a sequential complexity of 0(%),
where o is the number of vertices in the graph.

In the further part of the work, a parallel version of this algorithm will be proposed,
with the computational complexity of O(log? 0) with the use of 0(1(;’30) processors.
Algorithm starts from an idea of Gibbons and Rytter [10] for the shortest paths. It has
been developed in the paper of Steinhofel et al. [26] for the longest path and requires
0(0%) processors, and then in the work [3] in the version for O(I:go) processors.
As the algorithm requires simultaneous reading and there is no parallel writing to
memory cells, the CREW PRAM (Concurrent Read Exclusive Write Parallel Random
Access Machine) is an adequate model of parallel computing.

Let A = [a;j]oxo be the distance matrix of a certain graph, which is the input of
the algorithm. As the output algorithm will return the matrix A" = [a;j]oxo defined
as follows:

ay=1"° for i =, (6.37)
: MaX—i ... i=jAigiy + Qiyi, + -+ + ay_,i,} for i # j,
where the maximum is determined for all possible strings of indices iy, iy, i2, - - . , Ik,

so that i = iy and j = i;. The value of al/j is the length of the longest path from the
vertex i to j in the graph with the distance matrix A. The algorithm will addition-
ally use auxiliary matrices: M = [m;jl,x, (two-dimensional) and O = [gjjkloxoxo
(three-dimensional).

Steps 1 and 3 can be performed in O(1) constant time on O(o?) processors. In

step two, the maximum can be calculated over time O (log 0) with 0(@) processors

(see Bozejko [4]). By using o? processors, each of which has a group of 0(10’;0)

processors to determine the maximum in parallel, the entire Step 2 can be performed



120 C. Smutnicki and W. Bozejko

Input : A matrix;
Output: A’ matrix;
{Step 1}
parfor all (i,j),i=1,2,...,0,j=1,2,...,0do
|y < dyjs
end
{Step 2}
for iter = 1,2, ..., [log, o] do
parfor all (i,j, k), i=1,2,...,0,j=1,2,...,00k=1,2,...,0do
| ik < mij + mj;
end
parfor all (i,j),i=1,2,...,0,j=1,2,...,0do
| my < max{my, qi1j, qizj» - - - » Ginj}3
end
parfor all (i,j),i=1,2,...,0,j=1,2,...,0do
| my < max{my, qi1j, qizj» - - - » Gioj}3
end
end
{Step 3}
parfor all (i,j),i=1,2,...,0,j=1,2,...,0do
if i # j then
| a,’.j <~ myj;

else
/ .
| aj <0
end
end

Algorithm 1: ParLongestPaths (A,A")

in O(log? 0) using 0(13’;0) processors, which determines the complexity and the

number of processors required for the entire method.

6.4.2 Parallel Determination of the Minimum Cycle Time

Property 8 The value of the minimum cycle t{me in the problem under consideration

can be determined in time 0(10g2 0) on O(I(fgo)-processors CREW PRAM.

Proof The longest paths in a chain graph G*(7r) can be determined by the
ParLongestPaths algorithm in the time 0(10g2 m) on O(Ifzm)-processors
CREW PRAM (substituting the number of machines m in place of 0). As an result we
will obtain a matrix of m? lower bounds of the minimal cycle time, from which at least
one—the greatest one—is an exact value of the minimal cycle time 7 (7). The mini-
mum of m? values can be determined over time O(log m?) =02 logm) = O(logm)
on a CREW PRAM with 0(102%) = 0(10’;”) = 0(1;23”1) processors. Additionally,
the time required to determine the weights in the G*(r) graph should be taken
into account, which (using the already mentioned ParLongestPaths algorithm

applied to the G () graph) is 0(log2 0)on O( 1(;’g}{))-processors the CREW PRAM and
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determines the complexity of O(max{log® 0, log? m}) = O(log? 0) and the number of

processors O(max{k;’;o, 1(:23m)}) = O(l;’gz()) of the entire method. The last inequality

is due to the fact that o > m.

Property 9 The value of the minimum cycle time in the Igroblem under considera-
tion can be determined in time O(o + log2 m) using 0(%)-processors the CREW
PRAM.

Proof The procedure presented in the proof of the previous theorem should be used,
with the difference that the longest paths in chain graph G*(;7) should be determined
using the method based on a vertex review in topological order, analogically to the
LA™ algorithm. This method has a sequential complexity of O (mo) = O(m*n) (the
number of operations o = m - n) due to the fact that m times it must perform the vertex
review procedure in topological order, starting each time from the next source—a
vertex representing the execution of the first operation on the machine. This routine
can be easily paralleled by using m processors and getting O(o) parallel run-time.
The remaining elements remain the same as in the proof of Property 8, i.e., the

longest paths in time should be found in O (log? m) with using 0(10’23”1) processors, and

then find the maximum from m? calculated values, in time O (log m) with O(IO’ZZM) =

O(-2-) processors. The total time will then be O(max{o, log? m}) = O(o + log? m)

logm

and O(max{m, %)}) = 0(1(;1;3}%) processors.

Despite the worse computation time of the method related to the Property 9, it
may be in practice more beneficial from a practical point of view, because it requires
a much smaller number of processors.

6.5 Application

A firm cooperating with our University would like to optimize the process of pro-
ducing building blocks made of the cellular concrete. The factory provides blocks in
combination of various sizes and various physical features fitted to the building con-
struction purposes. The technological process consists of eighth stages performed
consecutively, see Grabowski and Pempera [12] for details:

mixing the concrete ingredients (depending on the concrete sort),
filling the chosen size mould by a liquefied concrete,

primal establishing concrete in a mould to get a soft texture,
snipping blocks from soft concrete,

product quality control,

hardening of blocks in specific conditions (pressure, temperature),
transportation of blocks to the warehouse,

transport of blocks to clients.

NN R L=
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A fixed portion of blocks (their number, geometry, physical properties) ordered by a
client is called the production task. There is a pre-defined set of various tasks to be
performed in the factory. Because of the technology requirements, there exist bounds
on waiting times between operations 1 and 2, 2 and 3, 3 and 4. Indeed, filling the
form can be performed immediately after the mixing components step, but not too
late because of the fast hardening process of liquefied concrete in the mixing unit.
After the filling the mould in step 2, the primal hardening of the concrete in the mould
(step 3) should be in some range of waiting time given by appropriate lower/upper
bounds. Snipping operation in step 4 cannot be preformed too late after operation 3
because of possible hardening of the concrete in the mould. The optimization process
can be considered in two contexts: (a) having the given the set of tasks, we would like
to find the schedule minimizing the makespan, (b) having the set of tasks performed
in the repetitive way, we would like to find the cyclic schedule minimizing the cycle
time.

6.6 Conclusions

To our best knowledge, the proposed modelling fashion of “limited waiting-time”
constraints as well as cyclical schedule are unusual. Various graphs play the signifi-
cant role in the modeling as well as the solution technology. The problem has been
decomposed into two sub-problems: (1) to find the optimal processing order, and (2)
to find the minimal cycle time for the given processing order. For the sub-problem
(2) we have proposed a few methods based on graph properties as well as parallel
computations. For the sub-problem (1) we have introduced through graphs some
elimination properties for local neighbourhood search metaheuristics.

Further research are needed to verify experimentally theoretical findings and
to compare proposed approaches. The whole approach can be extended on other,
more complex cyclic scheduling problems (as an example job-shop), problems with
buffers, and so on. Each of proposed algorithm can be embedded in any meta-heuristic
algorithm seeking the best job processing order 7. In turn, the proposed methodol-
ogy of parallel determination of the minimum cycle time can be used both on the
multi-core CPU platform and GPU co-processor platform, which has recently been
growing in popularity.
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